• 买的半桥驱动器还没来,调试工作这几天没法进展,今天来说说半桥电源的优缺点吧。正所谓:人无完人。 首先,半桥式电源输出功率大,工作效率高。半桥式开关电源与推挽式开关电源一样,由于两个开关管轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输出功率的两倍。因此,半桥式电源输出功率大,效率高,经全桥或全波整流后,输出电压的电压脉动系数Sv和电流脉动系数Si都很小,仅需要很小的滤波电感和电容,其输出电压纹波就可以达到很小。 其次,半桥式电源的开关管的耐压值比较低。这一点在此不再赘述,针对开
  • 买的半桥驱动器还没来,调试工作这几天没法进展,今天来说说半桥电源的优缺点吧。正所谓:人无完人。 首先,半桥式电源输出功率大,工作效率高。半桥式开关电源与推挽式开关电源一样,由于两个开关管轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输出功率的两倍。因此,半桥式电源输出功率大,效率高,经全桥或全波整流后,输出电压的电压脉动系数Sv和电流脉动系数Si都很小,仅需要很小的滤波电感和电容,其输出电压纹波就可以达到很小。 其次,半桥式电源的开关管的耐压值比较低。这一点在此不再赘述,针对开 >>
  • 来源:bbs.21dianyuan.com/forum.php?mod=viewthread&tid=294664
  • 一、开关电源印制板的设计 首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。 布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接 线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接 近开关电源输入端,输入线应避免与其他电路平行,应避开。Y电容应放置在机壳接地端子或FG连接端。共
  • 一、开关电源印制板的设计 首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。 布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接 线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接 近开关电源输入端,输入线应避免与其他电路平行,应避开。Y电容应放置在机壳接地端子或FG连接端。共 >>
  • 来源:toutiao.adline.com.cn/adline/article/5c43748e08d2ab6c5d888a2d?app_id=1&cid=10&category_id=7&c=0&f=local
  • 图 2 编程实现 SCR 的锁存控制 使用这种电路的方法有很多,特别是在您使用升降沿来触发它时。例如,在 Q5 偏压和基极之间连接一个齐纳二极管,便可以在一次侧实现过电压保护。您可以使用一个负向变换的温度传感器来驱动 Q4 的基极。或者,您也可以在二次侧使用一个比较器,通过一个与图 2 所示极为类似的光耦合器,实现一种非常精确的过电流关闭功能。 总之,这种由 0.
  • 图 2 编程实现 SCR 的锁存控制 使用这种电路的方法有很多,特别是在您使用升降沿来触发它时。例如,在 Q5 偏压和基极之间连接一个齐纳二极管,便可以在一次侧实现过电压保护。您可以使用一个负向变换的温度传感器来驱动 Q4 的基极。或者,您也可以在二次侧使用一个比较器,通过一个与图 2 所示极为类似的光耦合器,实现一种非常精确的过电流关闭功能。 总之,这种由 0. >>
  • 来源:www.eepw.com.cn/article/178352_2.htm
  • 这台比上次的损坏较多. 1 滤波电容损坏换新. 2 继电器坏,喇叭无法接上不会响. 3 前置OPIC电源稳压晶体损坏,,OPIC不工作,也无声. 4 波段开关接触不良. 5 交连电容不通,要换新的. 机子老旧,毛病很多,修起来很费时 修这台心情都糟透了!!! 两个滤波点解电容损坏有哼声,电压升不起来 继电器不通 晶体烧断,OPIC 无电源
  • 这台比上次的损坏较多. 1 滤波电容损坏换新. 2 继电器坏,喇叭无法接上不会响. 3 前置OPIC电源稳压晶体损坏,,OPIC不工作,也无声. 4 波段开关接触不良. 5 交连电容不通,要换新的. 机子老旧,毛病很多,修起来很费时 修这台心情都糟透了!!! 两个滤波点解电容损坏有哼声,电压升不起来 继电器不通 晶体烧断,OPIC 无电源 >>
  • 来源:h5.china.com.cn/fandoc/doc_1_1356316_5022677.html?d=1545801128000
  •   通过上述理论分析,推出控制量u ( k) 的数学表达式为:      式中 ---积分门限。   e( k) ---误差的变化量, e( k) = e ( k) - e ( k - 1)。      图3 控制系统原理方框图   图3 示出控制系统原理方框图。与DSP 的T1PINT 周期同步的电流A/ D 采样,将测得的电流平均值作为反馈值I F参予电流调节器的运算。经过变参数的积分分离PI 计算,调节驱动高频逆变电路中开关管的驱动信号,从而调节充电电流保持恒定。   4 软件设计   图4
  •   通过上述理论分析,推出控制量u ( k) 的数学表达式为:      式中 ---积分门限。   e( k) ---误差的变化量, e( k) = e ( k) - e ( k - 1)。      图3 控制系统原理方框图   图3 示出控制系统原理方框图。与DSP 的T1PINT 周期同步的电流A/ D 采样,将测得的电流平均值作为反馈值I F参予电流调节器的运算。经过变参数的积分分离PI 计算,调节驱动高频逆变电路中开关管的驱动信号,从而调节充电电流保持恒定。   4 软件设计   图4 >>
  • 来源:www.shoukehuji.com.cn/a/qianrushi/DSP_FPGAjishu/2013/0113/15773_2.html
  • 传播途径,比较的直观全面  我们先来看传导途径: 传导干扰的传递都是通过电线来传递的,测试的时候,使测试通过电线传导出来得干扰大小。  也就是说对电源来说,所有的传导干扰都会通过输入线,传递到测试接收器。 那么这些干扰如何传递到接收器的?又要如何来阻挡这些干扰传递到接收器呢? 先来看差模的概念,差模电流很容易理解,如下图,  差模电流在输入的火线和零线(或者正线到负线)之间形成回路,用基尔霍夫定理可以很容易理解,两条线上的电流完全相等。
  • 传播途径,比较的直观全面 我们先来看传导途径: 传导干扰的传递都是通过电线来传递的,测试的时候,使测试通过电线传导出来得干扰大小。 也就是说对电源来说,所有的传导干扰都会通过输入线,传递到测试接收器。 那么这些干扰如何传递到接收器的?又要如何来阻挡这些干扰传递到接收器呢? 先来看差模的概念,差模电流很容易理解,如下图, 差模电流在输入的火线和零线(或者正线到负线)之间形成回路,用基尔霍夫定理可以很容易理解,两条线上的电流完全相等。 >>
  • 来源:www.dianyuan.com/article/12087-9-6.html
  • 第1章 PSpice简介 第2章 PSpice概述 2.1 PSpice的基本组成 2.2 应用实例 2.3 电路文件的格式 2.4 电路的描述语句 2.4.1 节点 2.4.2 电路元件 2.4.3 元件值 2.4.4 元件模型 2.4.5 电源和信号源 2.4.6 分析类型 2.4.7 注释语句 2.4.8 输出变量 2.4.9 输出命令 2.4.10 输出文件的格式 第3章 特性分析 3.
  • 第1章 PSpice简介 第2章 PSpice概述 2.1 PSpice的基本组成 2.2 应用实例 2.3 电路文件的格式 2.4 电路的描述语句 2.4.1 节点 2.4.2 电路元件 2.4.3 元件值 2.4.4 元件模型 2.4.5 电源和信号源 2.4.6 分析类型 2.4.7 注释语句 2.4.8 输出变量 2.4.9 输出命令 2.4.10 输出文件的格式 第3章 特性分析 3. >>
  • 来源:detail.bookuu.com/0975252.html
  •   其基本工作原理如下:   当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定的移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。   由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关
  •   其基本工作原理如下:   当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定的移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。   由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关 >>
  • 来源:ec.csc86.com/jishu/wenku/2013/1216/194.html
  • 1 引 言 蓄电池正常充电时,比较好的充电方法是分级定流方式,即在充电初期用较大的恒定电流,充到一定时间或蓄电池达到一定电压后,改用较小的恒定电流充电。同时蓄电池恒流充电电源不同于普通的直流电源,它的工作负载范围非常宽,其输出电压可能从近似为零变到额定值。因此,在较宽的负载范围内保证蓄电池充电阶段的平滑过渡,以及不同阶段时的恒流特性是蓄电池恒流充电电源的设计难点。这里设计的基于DSP 变参数积分分离PI 调节的两级恒流充电电源可方便地解决这一难题。 2 系统结构及工作原理 图1 示出蓄电池恒流充电电源的结
  • 1 引 言 蓄电池正常充电时,比较好的充电方法是分级定流方式,即在充电初期用较大的恒定电流,充到一定时间或蓄电池达到一定电压后,改用较小的恒定电流充电。同时蓄电池恒流充电电源不同于普通的直流电源,它的工作负载范围非常宽,其输出电压可能从近似为零变到额定值。因此,在较宽的负载范围内保证蓄电池充电阶段的平滑过渡,以及不同阶段时的恒流特性是蓄电池恒流充电电源的设计难点。这里设计的基于DSP 变参数积分分离PI 调节的两级恒流充电电源可方便地解决这一难题。 2 系统结构及工作原理 图1 示出蓄电池恒流充电电源的结 >>
  • 来源:www.shoukehuji.com.cn/a/qianrushi/DSP_FPGAjishu/2013/0113/15773.html
  •   其基本工作原理如下:   当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定的移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。   由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关
  •   其基本工作原理如下:   当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定的移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。   由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关 >>
  • 来源:ec.csc86.com/jishu/wenku/2013/1216/194.html
  • 这个评估模块的默认输出电压是: V=1.05V,可以通过调节R1和R2的阻值来得到不同的输出。默认情况下的测试图如下:  上面的图片是默认情况下,空载输出,测试电压如图,VOUT=1.0592V。 为了实现5V的电源输出,需要计算一下R1和R2的阻值,并对板子上的电阻进行替换。在TPS54229EEVM的说明书中,写明:“For higher output voltages of1.
  • 这个评估模块的默认输出电压是: V=1.05V,可以通过调节R1和R2的阻值来得到不同的输出。默认情况下的测试图如下: 上面的图片是默认情况下,空载输出,测试电压如图,VOUT=1.0592V。 为了实现5V的电源输出,需要计算一下R1和R2的阻值,并对板子上的电阻进行替换。在TPS54229EEVM的说明书中,写明:“For higher output voltages of1. >>
  • 来源:www.deyisupport.com/blog/b/webench/archive/2014/03/03/tps54229e-12v-5v.aspx
  • 1.2 变压器设计 变压器是开关电源的重要组成部分,它对电源的效率和工作可靠性,以及输出电气性能都起着非常重要的作用。在设计时要充分考虑转换功率容量、工作频率、主电路形式、输入和输出电压等级和变化范围、铁芯材料和形状、绕组绕制方式、散热条件、工作环境和成本等各方面的因素。而单端反激式变换电路中的变压器既有电抗器的功能又有变压器的工作特性,因而它的设计方法有它的特殊性。 如图1所示,当功率开关管受PWM脉冲激励而导通时,直流输入电压施加到高频变压器的原边绕组上,在变压器次级绕组上感应出的电压使整流二极管反
  • 1.2 变压器设计 变压器是开关电源的重要组成部分,它对电源的效率和工作可靠性,以及输出电气性能都起着非常重要的作用。在设计时要充分考虑转换功率容量、工作频率、主电路形式、输入和输出电压等级和变化范围、铁芯材料和形状、绕组绕制方式、散热条件、工作环境和成本等各方面的因素。而单端反激式变换电路中的变压器既有电抗器的功能又有变压器的工作特性,因而它的设计方法有它的特殊性。 如图1所示,当功率开关管受PWM脉冲激励而导通时,直流输入电压施加到高频变压器的原边绕组上,在变压器次级绕组上感应出的电压使整流二极管反 >>
  • 来源:www.edutt.com/news_show_40669/
  • 引:(关键词:锂电池组)传统野外探地雷达测试仪采用铅酸电池作为移动备用电源,由于铅酸电池自身能量密度低,质量重、倍率放电效率低,非环保等缺点,已经无法满足现代便携式工业仪器设备所需备用电源的需求。由于锂电池组具备高能量比、轻质量、小体积、高循环寿命、高安全、高电压一致性等独特的优点,已经在众多工业仪器设备领域成为替代铅酸电池首选。 一、探地雷达测试仪备用电源要求: 探地雷达测试仪具有高工作电压、长时间及特殊环境温度的要求,在锂电池电芯方面采用国内一线品牌的比克长寿命锂电芯,用6串8并组合实现客户相关参数需
  • 引:(关键词:锂电池组)传统野外探地雷达测试仪采用铅酸电池作为移动备用电源,由于铅酸电池自身能量密度低,质量重、倍率放电效率低,非环保等缺点,已经无法满足现代便携式工业仪器设备所需备用电源的需求。由于锂电池组具备高能量比、轻质量、小体积、高循环寿命、高安全、高电压一致性等独特的优点,已经在众多工业仪器设备领域成为替代铅酸电池首选。 一、探地雷达测试仪备用电源要求: 探地雷达测试仪具有高工作电压、长时间及特殊环境温度的要求,在锂电池电芯方面采用国内一线品牌的比克长寿命锂电芯,用6串8并组合实现客户相关参数需 >>
  • 来源:www.juda.cn/news/1783.html
  • 本文探讨在全球节能趋势下的电源节能法规,同时介绍一些在提高电源效率和缩小待机功耗方面的技术趋势和解决方案。 在中国电子整机企业推进绿色采购、绿色制造和绿色设计以迎接RoHS等环保指令挑战的过程中,包括中国在内的世界多国出台了要求更趋严格的节能法规,使得中国企业在设计绿色电源、进行节能降耗方面面临着更大的压力。特别是随着越来越多的中国产品出口海外,满足欧美等地的电源规范标准变得愈加重要,电子设备制造厂商除了需要更注重产品的种种新的特色功能,还需要更加关注产品的电源管理和节能特色。与此相应的,各种节电技术不
  • 本文探讨在全球节能趋势下的电源节能法规,同时介绍一些在提高电源效率和缩小待机功耗方面的技术趋势和解决方案。 在中国电子整机企业推进绿色采购、绿色制造和绿色设计以迎接RoHS等环保指令挑战的过程中,包括中国在内的世界多国出台了要求更趋严格的节能法规,使得中国企业在设计绿色电源、进行节能降耗方面面临着更大的压力。特别是随着越来越多的中国产品出口海外,满足欧美等地的电源规范标准变得愈加重要,电子设备制造厂商除了需要更注重产品的种种新的特色功能,还需要更加关注产品的电源管理和节能特色。与此相应的,各种节电技术不 >>
  • 来源:www.ic72.com/technology/info_14517.html
  • 图7 ST M32 程序流程图   代码经过合理编写, 逻辑清晰, 功能完善, 结构紧凑而又突出健壮性, 可维护性强, 符合工控软件编写要求。   项目过程中整理的开发测试说明文档详实准确, 也为后继研究带来便捷。 [p] 4 样机验证   目标板经过测试验证后成功应用在一台6KVA 工频双变换纯在线式单相小功率逆变电源上。各负载加载测试波形如图8 所示。空载输出电压波形1/ 4 负载输出电压波形满载输出电压波形测量结果表明, 220 V 交流输入时不同负载情况下电源的输出波形失真度小于3%,非线性负载
  • 图7 ST M32 程序流程图   代码经过合理编写, 逻辑清晰, 功能完善, 结构紧凑而又突出健壮性, 可维护性强, 符合工控软件编写要求。   项目过程中整理的开发测试说明文档详实准确, 也为后继研究带来便捷。 [p] 4 样机验证   目标板经过测试验证后成功应用在一台6KVA 工频双变换纯在线式单相小功率逆变电源上。各负载加载测试波形如图8 所示。空载输出电压波形1/ 4 负载输出电压波形满载输出电压波形测量结果表明, 220 V 交流输入时不同负载情况下电源的输出波形失真度小于3%,非线性负载 >>
  • 来源:www.edatop.com/ee/268216.html
  • 这个评估模块的默认输出电压是: V=1.05V,可以通过调节R1和R2的阻值来得到不同的输出。默认情况下的测试图如下:  上面的图片是默认情况下,空载输出,测试电压如图,VOUT=1.0592V。 为了实现5V的电源输出,需要计算一下R1和R2的阻值,并对板子上的电阻进行替换。在TPS54229EEVM的说明书中,写明:“For higher output voltages of1.
  • 这个评估模块的默认输出电压是: V=1.05V,可以通过调节R1和R2的阻值来得到不同的输出。默认情况下的测试图如下: 上面的图片是默认情况下,空载输出,测试电压如图,VOUT=1.0592V。 为了实现5V的电源输出,需要计算一下R1和R2的阻值,并对板子上的电阻进行替换。在TPS54229EEVM的说明书中,写明:“For higher output voltages of1. >>
  • 来源:www.deyisupport.com/blog/b/webench/archive/2014/03/03/tps54229e-12v-5v.aspx
  • 从图6、图7可以看出滞后臂开关管VT3、VT4很好地实现了ZCS关断,关断时开关管电流已经为零;滞后臂开关管完全开通之前,开关管电流也几乎为零,基本实现了ZCS开通。而且滞后桥臂开关管VT3、VT4可以在很大负载范围内实现ZCS开关。 图8是两桥臂中点之间的电压Uab的波形图,(a)为仿真波形、(b)为实验波形。
  • 从图6、图7可以看出滞后臂开关管VT3、VT4很好地实现了ZCS关断,关断时开关管电流已经为零;滞后臂开关管完全开通之前,开关管电流也几乎为零,基本实现了ZCS开通。而且滞后桥臂开关管VT3、VT4可以在很大负载范围内实现ZCS开关。 图8是两桥臂中点之间的电压Uab的波形图,(a)为仿真波形、(b)为实验波形。 >>
  • 来源:www.szc.com/quote/show/8179/