• 自从二次元这个概念被手游行业发掘出来,针对日本动漫的盗IP、蹭IP就成了家常便饭,从80年代至今但凡有点影响的形象都被用过一遍,死神火影海贼更是成了重灾区。近来这股势头稍稍得以遏制,一方面是由于二次元用户对此有了一定的鉴别能力和免疫力,更重要的一点则是国内拿到IP的大厂商有所动作了。早在2013年,刚刚获得《火影忍者》正版授权的腾讯就进行过一轮维权,骏梦的盗版页游《小小忍者》关停;在2014年初,DeNA中国则对《圣斗士》和《海贼王》进行了维权,关停了《黄金圣斗士》和《梦想海贼王》。前不
  • 自从二次元这个概念被手游行业发掘出来,针对日本动漫的盗IP、蹭IP就成了家常便饭,从80年代至今但凡有点影响的形象都被用过一遍,死神火影海贼更是成了重灾区。近来这股势头稍稍得以遏制,一方面是由于二次元用户对此有了一定的鉴别能力和免疫力,更重要的一点则是国内拿到IP的大厂商有所动作了。早在2013年,刚刚获得《火影忍者》正版授权的腾讯就进行过一轮维权,骏梦的盗版页游《小小忍者》关停;在2014年初,DeNA中国则对《圣斗士》和《海贼王》进行了维权,关停了《黄金圣斗士》和《梦想海贼王》。前不 >>
  • 来源:www.chuapp.com/2015/07/29/185843.html
  • 看门狗定时器WDT是一片内自振荡式RC振荡器,即使外部振荡器被关闭(即工作在休眠模式),WDT也一直在计数。当WDT被使能,无论是在工作模式或休眠模式,若WDT超时,都将导致单片机复位,因此WDT主要用来防止单片机系统失控,一般WDT基本溢出周期约18ms(PAB=0),最大溢出周期约2.
  • 看门狗定时器WDT是一片内自振荡式RC振荡器,即使外部振荡器被关闭(即工作在休眠模式),WDT也一直在计数。当WDT被使能,无论是在工作模式或休眠模式,若WDT超时,都将导致单片机复位,因此WDT主要用来防止单片机系统失控,一般WDT基本溢出周期约18ms(PAB=0),最大溢出周期约2. >>
  • 来源:www.zsgbailin.com/emjg2.htm
  • 我们选择的是(TRG=10 & PT=1)倒数第二个选项,只要设置了一个装载值和比较值就可以确定占空比和周期。 设置装载值: TI8168_EVM#mw.l 0x48044040 0xffffffe0 vcD4KPHA+y8Shosno1sOxyL3PJiMyMDU0MDujujwvcD4KPHA+VEk4MTY4X0VWTSNtdy5sIDB4NDgwNDQwNGMgMHhmZmZmZmZmMCA8YnI+CjwvcD4KPHA+PGltZyBzcmM
  • 我们选择的是(TRG=10 & PT=1)倒数第二个选项,只要设置了一个装载值和比较值就可以确定占空比和周期。 设置装载值: TI8168_EVM#mw.l 0x48044040 0xffffffe0 vcD4KPHA+y8Shosno1sOxyL3PJiMyMDU0MDujujwvcD4KPHA+VEk4MTY4X0VWTSNtdy5sIDB4NDgwNDQwNGMgMHhmZmZmZmZmMCA8YnI+CjwvcD4KPHA+PGltZyBzcmM >>
  • 来源:www.41443.com/HTML/Java/20150320/358056.html
  • 1、时序图 2、控制字 3、寄存器地址与RAM地址 4、代码 时序图  控制字  寄存器与RAM  代码: #include <reg52.h> #include <intrins.h> sbit dm = P2^2; //段码 sbit wm = P2^3; //位码 sbit st = P1^6; //使能(RST) sbit cl = P1^4; //时钟管脚(CLK) sbit da = P1^5; //i/o管脚(数据管脚)(i/o) /*这两个函数就这时钟芯片的精髓*/
  • 1、时序图 2、控制字 3、寄存器地址与RAM地址 4、代码 时序图 控制字 寄存器与RAM 代码: #include <reg52.h> #include <intrins.h> sbit dm = P2^2; //段码 sbit wm = P2^3; //位码 sbit st = P1^6; //使能(RST) sbit cl = P1^4; //时钟管脚(CLK) sbit da = P1^5; //i/o管脚(数据管脚)(i/o) /*这两个函数就这时钟芯片的精髓*/ >>
  • 来源:www.51hei.com/bbs/dpj-30428-1.html
  • DM8168的PWM是通过TIMx_OUT引脚输出的,需要对Timer进行配置才能有波形输出。 对Timer的时钟进行配置,确保Timer能正常工作。 设置寄存器之前关闭Timer。 设置定时溢出后的装载值。 设置比较值,该值决定PWM占空比。 设置internal counter值。 启动Timer。 启动DM8168过后,停在U-boot界面,使用U-boot的内存读写工具来进行调试。 一、修改CM_ALWON_TIMER_4_CLKC
  • DM8168的PWM是通过TIMx_OUT引脚输出的,需要对Timer进行配置才能有波形输出。 对Timer的时钟进行配置,确保Timer能正常工作。 设置寄存器之前关闭Timer。 设置定时溢出后的装载值。 设置比较值,该值决定PWM占空比。 设置internal counter值。 启动Timer。 启动DM8168过后,停在U-boot界面,使用U-boot的内存读写工具来进行调试。 一、修改CM_ALWON_TIMER_4_CLKC >>
  • 来源:www.lxway.com/115011806.htm
  • FPGA内部寄存器的上电初值是什么? 有说是低的,有说是高的, 也有说和器件相关的,还有些人说是不确定. 对于一个系统来讲, 用户并不在意初值是高电平,或者是低电平, 用户真正关心的是寄存器的初值是不是确定可预测的,也就是说每次编译,每次上电的初值是不是一致的。来举个例子,有个客户在调试FPGA设计,在头一个月编译的几百次结果中,一个寄存器的初值一直都是低电平。某一天改了一部分看似不相关的代码之后,这个寄存器的初值从此之后就变成高电平了。这种情况通常会让用户不知所措,非常痛苦。后来在我们的一起努力下,采用
  • FPGA内部寄存器的上电初值是什么? 有说是低的,有说是高的, 也有说和器件相关的,还有些人说是不确定. 对于一个系统来讲, 用户并不在意初值是高电平,或者是低电平, 用户真正关心的是寄存器的初值是不是确定可预测的,也就是说每次编译,每次上电的初值是不是一致的。来举个例子,有个客户在调试FPGA设计,在头一个月编译的几百次结果中,一个寄存器的初值一直都是低电平。某一天改了一部分看似不相关的代码之后,这个寄存器的初值从此之后就变成高电平了。这种情况通常会让用户不知所措,非常痛苦。后来在我们的一起努力下,采用 >>
  • 来源:xilinx.eetrend.com/blog/3299
  •   Aune X1S是HiFiDIY近期推出的一款外置解码器产品,是Aune X1系列的全面升级换代产品,支持RCA模拟输出、6.3mm耳机输出,以及RCA模拟输入作为耳机放大器使用,支持SPDIF光纤和RCA同轴数字输入解码使用.Aune X1S的USB部分以XMOS xCore系列产品为主控,使用USB时最高支持32bit384kHz和DSD128的数字音频解码能力,同轴和光纤输入支持至24bit192kHz,并支持SPDIF同轴输出.
  •   Aune X1S是HiFiDIY近期推出的一款外置解码器产品,是Aune X1系列的全面升级换代产品,支持RCA模拟输出、6.3mm耳机输出,以及RCA模拟输入作为耳机放大器使用,支持SPDIF光纤和RCA同轴数字输入解码使用.Aune X1S的USB部分以XMOS xCore系列产品为主控,使用USB时最高支持32bit384kHz和DSD128的数字音频解码能力,同轴和光纤输入支持至24bit192kHz,并支持SPDIF同轴输出. >>
  • 来源:www.hifidiy.net/index.php?s=/Home/Article/detail/id/15386.html
  • 从波形图中可以看出,Q0为翻转触发器输出,所以每个CP下降沿翻转一次,是一个二分频电路(也叫除二电路),第二个触发器也是除二电路,第三个触发器事实上也是除二电路,但它要在Q0,Q1同时从1到0时翻转,(比如数字0011到0100,第1,2两位从1变到0,第三位从0到1)。依次类推,第四个触发器为除二电路,但它要在Q0,Q1,Q2同时从1到0时翻转,(从数字0111到1000)。
  • 从波形图中可以看出,Q0为翻转触发器输出,所以每个CP下降沿翻转一次,是一个二分频电路(也叫除二电路),第二个触发器也是除二电路,第三个触发器事实上也是除二电路,但它要在Q0,Q1同时从1到0时翻转,(比如数字0011到0100,第1,2两位从1变到0,第三位从0到1)。依次类推,第四个触发器为除二电路,但它要在Q0,Q1,Q2同时从1到0时翻转,(从数字0111到1000)。 >>
  • 来源:wwww.ahtvu.ah.cn/jxc1/zhykch/5120/kejian/wshdx/6/6.files/main3.htm
  • 本系统采用常见的51单片机作为主控芯片,程序开始对单片机初始化,再对12864液晶初始化和始终芯片ds1302初始化后主控芯片就一直检测卡片传过来的信息并对其解码还原成卡号。并通过按键检测来识别身份和与内部存储的卡号对比来控制继电器的开关模拟门禁系统。通过程序来读取DS1302内部寄存器的数值来显示时间。 本程序是外部电路接收到开卡发回来的曼码与单片机接口相连,单片机检测输入的高低电平的跳变来还原成卡号。具体10跳变解码成1,01跳变解码成0.
  • 本系统采用常见的51单片机作为主控芯片,程序开始对单片机初始化,再对12864液晶初始化和始终芯片ds1302初始化后主控芯片就一直检测卡片传过来的信息并对其解码还原成卡号。并通过按键检测来识别身份和与内部存储的卡号对比来控制继电器的开关模拟门禁系统。通过程序来读取DS1302内部寄存器的数值来显示时间。 本程序是外部电路接收到开卡发回来的曼码与单片机接口相连,单片机检测输入的高低电平的跳变来还原成卡号。具体10跳变解码成1,01跳变解码成0. >>
  • 来源:www.9mcu.com/9mcubbs/forum.php?mod=viewthread&tid=1043948
  • C串行总线标准,这里不再赘述。而S5920外加总线信号分为输入(in)、输出(out)和双向三态(t/s)三种。下面对S5920的外加总线引脚作一分类描述: 3.1 信箱通道引脚   MDMODE:(in),信箱通道数据模式选择端。高电平时,MD[70]信号恒为输入;低电平时,由LOAD#信号控制MD[70]为输入或输出。 LOAD#:(in),高电平时,MD[70]为输入,下一个时钟ADCLK的上升沿将数据锁入到外加总线输出信箱寄存器的第三字节;当低电平且MDMODE为0时,MD[70]上显示PC
  • C串行总线标准,这里不再赘述。而S5920外加总线信号分为输入(in)、输出(out)和双向三态(t/s)三种。下面对S5920的外加总线引脚作一分类描述: 3.1 信箱通道引脚   MDMODE:(in),信箱通道数据模式选择端。高电平时,MD[70]信号恒为输入;低电平时,由LOAD#信号控制MD[70]为输入或输出。 LOAD#:(in),高电平时,MD[70]为输入,下一个时钟ADCLK的上升沿将数据锁入到外加总线输出信箱寄存器的第三字节;当低电平且MDMODE为0时,MD[70]上显示PC >>
  • 来源:lunwen.freekaoyan.com/ligonglunwen/dianzi/20080216/120313686576916.shtml
  • 1.往SD卡传数据量大,会占用很大的CPU资源,为了防止他一直占用CPU资源,我们用DMA来处理数据,这个速度也很快; 2.对于SD_PowerON()当中CMD*是对应寄存器中的命令, CMD0: 没有返回响应 我们的板子上往往只接了一个卡,但SDIO总线可以并联许多个卡 3.SDIO支持的端口电压是2.
  • 1.往SD卡传数据量大,会占用很大的CPU资源,为了防止他一直占用CPU资源,我们用DMA来处理数据,这个速度也很快; 2.对于SD_PowerON()当中CMD*是对应寄存器中的命令, CMD0: 没有返回响应 我们的板子上往往只接了一个卡,但SDIO总线可以并联许多个卡 3.SDIO支持的端口电压是2. >>
  • 来源:www.lxway.com/482496086.htm
  • 其中最低位为1,与Bypass为0,是相对应的。这样,在单板上测试器件时,很容易识别有多少个器件。 根据IEEE1149.1,芯片上电开始,若有IDcode,则IDCODE指令移入指令寄存器,否则BYPASS指令移入指令寄存器。 所以单板测试时,需要识别器件的过程中: 1、TAP直接进入进入Select_DR_Scan状态,然后依次通过Capture_DR,Shift_DR状态。 2、从TDO移位出的数据,如果第一位为0,则表示,器件没有标示寄存器。如果第一位为1,则表示器件有标示寄存器,应该关注紧接着
  • 其中最低位为1,与Bypass为0,是相对应的。这样,在单板上测试器件时,很容易识别有多少个器件。 根据IEEE1149.1,芯片上电开始,若有IDcode,则IDCODE指令移入指令寄存器,否则BYPASS指令移入指令寄存器。 所以单板测试时,需要识别器件的过程中: 1、TAP直接进入进入Select_DR_Scan状态,然后依次通过Capture_DR,Shift_DR状态。 2、从TDO移位出的数据,如果第一位为0,则表示,器件没有标示寄存器。如果第一位为1,则表示器件有标示寄存器,应该关注紧接着 >>
  • 来源:www.cnblogs.com/littleMa/p/5315966.html
  • 所以,发送和接收寄存器可使用同一地址,编写验证程序(发送和接收是独立空间):读取一个数(1)->发送一个数(2)->再读取得1则是独立空间 不知道STM32串口寄存器和C51串口寄存器是否同样道理 STM32串口寄存器:STM32的发送与接收是通过数据寄存器USART_DR来实现的,这是一个双寄存器,包含了TDR和RDR,对它读操作,读取的是RDR寄存器的值,对它的写操作,实际上是写到TDR寄存器的;当向该寄存器写数据的时候,串口就会自动发送,当收到收据的时候,也是存在该寄存器内。
  • 所以,发送和接收寄存器可使用同一地址,编写验证程序(发送和接收是独立空间):读取一个数(1)->发送一个数(2)->再读取得1则是独立空间 不知道STM32串口寄存器和C51串口寄存器是否同样道理 STM32串口寄存器:STM32的发送与接收是通过数据寄存器USART_DR来实现的,这是一个双寄存器,包含了TDR和RDR,对它读操作,读取的是RDR寄存器的值,对它的写操作,实际上是写到TDR寄存器的;当向该寄存器写数据的时候,串口就会自动发送,当收到收据的时候,也是存在该寄存器内。 >>
  • 来源:www.cnblogs.com/cj2014/p/3969951.html
  • 可能你已经注意到了,表 5-2 的 TCON 最后标注了“可位寻址”,而表 5-4 的 TMOD 标注的是“不可位寻址”。意思就是说:比如 TCON 有一个位叫 TR1,我们可以在程序中直接进行 TR1 = 1 这样的操作。但对 TMOD 里的位比如(T1)M1 = 1 这样的操作就是错误的。我们要操作就必须一次操作这整个字节,也就是必须一次性对 TMOD 所有位操作,不能对其中某一位单独进行操作,那么我们能不能只修改其中的一位而不影响其它位的值呢?当然可以
  • 可能你已经注意到了,表 5-2 的 TCON 最后标注了“可位寻址”,而表 5-4 的 TMOD 标注的是“不可位寻址”。意思就是说:比如 TCON 有一个位叫 TR1,我们可以在程序中直接进行 TR1 = 1 这样的操作。但对 TMOD 里的位比如(T1)M1 = 1 这样的操作就是错误的。我们要操作就必须一次操作这整个字节,也就是必须一次性对 TMOD 所有位操作,不能对其中某一位单独进行操作,那么我们能不能只修改其中的一位而不影响其它位的值呢?当然可以 >>
  • 来源:c.biancheng.net/cpp/html/1878.html
  • 摘要:本文主要介绍了智能图像传感器DVT的在线检测,并且对检测结果获取、传输方面技术进行了说明,以及智能传感器和外围设备之间通信的研究。表明其获取结果多样性。本文举例应用智能传感器DVT630对工件小孔定位、半径测量,实验表明此传感器灵活性高,检测结果准确,提高工业流水生长线上的检测效率。 1、引言 DVT机器视觉系统,是能够代替人眼的计算机系统,是为适应图像、字符自动化生产线的检测和监控而研究开发的。 在高速、批量、连续的自动化生产过程中,往往需要视觉系统进行OCR字符及各种号码识别、质量检查、色彩与几
  • 摘要:本文主要介绍了智能图像传感器DVT的在线检测,并且对检测结果获取、传输方面技术进行了说明,以及智能传感器和外围设备之间通信的研究。表明其获取结果多样性。本文举例应用智能传感器DVT630对工件小孔定位、半径测量,实验表明此传感器灵活性高,检测结果准确,提高工业流水生长线上的检测效率。 1、引言 DVT机器视觉系统,是能够代替人眼的计算机系统,是为适应图像、字符自动化生产线的检测和监控而研究开发的。 在高速、批量、连续的自动化生产过程中,往往需要视觉系统进行OCR字符及各种号码识别、质量检查、色彩与几 >>
  • 来源:www.dt365.com/Article/HTML/20120705213327_9469.html
  • 1、显示模块 (1)静态显示 静态显示的优点是编程容易,管理简单,亮度较高。但是占用口线资源较多。 (2)动态显示 动态显示就是一位一位地轮流点亮显示器各个位(扫描),对于显示器的每一位来说,每隔一段时间点亮一次。显示器的亮度既与导通电流有关,也与点亮时间和间隔时间的比例有关。调整电流和时间参数,可实现亮度较高较稳定的显示。 扫描显示方式,即在某一时刻,只让某一位的位选线处于选通状态,而其它各位的位选线处于关闭状态,同时,段选线上输出相应位要显示字符的字型码,这样同一时刻,4位LED中只有选通的那一位显示
  • 1、显示模块 (1)静态显示 静态显示的优点是编程容易,管理简单,亮度较高。但是占用口线资源较多。 (2)动态显示 动态显示就是一位一位地轮流点亮显示器各个位(扫描),对于显示器的每一位来说,每隔一段时间点亮一次。显示器的亮度既与导通电流有关,也与点亮时间和间隔时间的比例有关。调整电流和时间参数,可实现亮度较高较稳定的显示。 扫描显示方式,即在某一时刻,只让某一位的位选线处于选通状态,而其它各位的位选线处于关闭状态,同时,段选线上输出相应位要显示字符的字型码,这样同一时刻,4位LED中只有选通的那一位显示 >>
  • 来源:www.avrvi.com/class/dianyadianliu/essay%20summary.htm
  • 由若干个正沿D触发器构成的一次能存储多位二进制代码的时序逻辑电路,叫寄存器。寄存器用于存储一组二进制数。 缓冲寄存器(buffer)  4位缓冲寄存器 工作原理:设有二进制(4位)数X3X2X1X0要存到缓冲器中。此Buffer 由D Register组成,将X送到Q端,CLK正沿未到Q3Q1不受X3X0影响,保持原状。 CLK到Q_传送给X,由Y输出, 这样将数据装到寄存器中。 弊端:X要送到Q端,只受CLK控制,即只要将X加到D端。CLK一到立即送到Q去,数据被冲掉,不可控。为此增设一个可控的门:L门
  • 由若干个正沿D触发器构成的一次能存储多位二进制代码的时序逻辑电路,叫寄存器。寄存器用于存储一组二进制数。 缓冲寄存器(buffer) 4位缓冲寄存器 工作原理:设有二进制(4位)数X3X2X1X0要存到缓冲器中。此Buffer 由D Register组成,将X送到Q端,CLK正沿未到Q3Q1不受X3X0影响,保持原状。 CLK到Q_传送给X,由Y输出, 这样将数据装到寄存器中。 弊端:X要送到Q端,只受CLK控制,即只要将X加到D端。CLK一到立即送到Q去,数据被冲掉,不可控。为此增设一个可控的门:L门 >>
  • 来源:www.science.globalsino.com/1/1science9355.html