• 1、显示模块 (1)静态显示 静态显示的优点是编程容易,管理简单,亮度较高。但是占用口线资源较多。 (2)动态显示 动态显示就是一位一位地轮流点亮显示器各个位(扫描),对于显示器的每一位来说,每隔一段时间点亮一次。显示器的亮度既与导通电流有关,也与点亮时间和间隔时间的比例有关。调整电流和时间参数,可实现亮度较高较稳定的显示。 扫描显示方式,即在某一时刻,只让某一位的位选线处于选通状态,而其它各位的位选线处于关闭状态,同时,段选线上输出相应位要显示字符的字型码,这样同一时刻,4位LED中只有选通的那一位显示
  • 1、显示模块 (1)静态显示 静态显示的优点是编程容易,管理简单,亮度较高。但是占用口线资源较多。 (2)动态显示 动态显示就是一位一位地轮流点亮显示器各个位(扫描),对于显示器的每一位来说,每隔一段时间点亮一次。显示器的亮度既与导通电流有关,也与点亮时间和间隔时间的比例有关。调整电流和时间参数,可实现亮度较高较稳定的显示。 扫描显示方式,即在某一时刻,只让某一位的位选线处于选通状态,而其它各位的位选线处于关闭状态,同时,段选线上输出相应位要显示字符的字型码,这样同一时刻,4位LED中只有选通的那一位显示 >>
  • 来源:www.avrvi.com/class/dianyadianliu/essay%20summary.htm
  • 1、显示模块 (1)静态显示 静态显示的优点是编程容易,管理简单,亮度较高。但是占用口线资源较多。 (2)动态显示 动态显示就是一位一位地轮流点亮显示器各个位(扫描),对于显示器的每一位来说,每隔一段时间点亮一次。显示器的亮度既与导通电流有关,也与点亮时间和间隔时间的比例有关。调整电流和时间参数,可实现亮度较高较稳定的显示。 扫描显示方式,即在某一时刻,只让某一位的位选线处于选通状态,而其它各位的位选线处于关闭状态,同时,段选线上输出相应位要显示字符的字型码,这样同一时刻,4位LED中只有选通的那一位显示
  • 1、显示模块 (1)静态显示 静态显示的优点是编程容易,管理简单,亮度较高。但是占用口线资源较多。 (2)动态显示 动态显示就是一位一位地轮流点亮显示器各个位(扫描),对于显示器的每一位来说,每隔一段时间点亮一次。显示器的亮度既与导通电流有关,也与点亮时间和间隔时间的比例有关。调整电流和时间参数,可实现亮度较高较稳定的显示。 扫描显示方式,即在某一时刻,只让某一位的位选线处于选通状态,而其它各位的位选线处于关闭状态,同时,段选线上输出相应位要显示字符的字型码,这样同一时刻,4位LED中只有选通的那一位显示 >>
  • 来源:www.avrvi.com/class/dianyadianliu/essay%20summary.htm
  • 了解一款芯片,最基本的就是要了解它的寄存器。大家不要因为80386是32位处理器,就认为它的寄存器都是32位的。其实它的寄存器相当的复杂。不仅有32位的,还有16位的,48位的,乃至64位的。80386共有34个寄存器,可分为七类。它们分别是通用寄存器、指令指针和标志寄存器、段寄存器、系统地址寄存器、控制寄存器、调试和测试寄存器。以下是部分常用的寄存器: 一、通用寄存器(8个) 80386有8个32位的通用寄存器,这8个通用寄存器都是由8088/8086/80286的相应16位通用寄存器扩展成32位而得。
  • 了解一款芯片,最基本的就是要了解它的寄存器。大家不要因为80386是32位处理器,就认为它的寄存器都是32位的。其实它的寄存器相当的复杂。不仅有32位的,还有16位的,48位的,乃至64位的。80386共有34个寄存器,可分为七类。它们分别是通用寄存器、指令指针和标志寄存器、段寄存器、系统地址寄存器、控制寄存器、调试和测试寄存器。以下是部分常用的寄存器: 一、通用寄存器(8个) 80386有8个32位的通用寄存器,这8个通用寄存器都是由8088/8086/80286的相应16位通用寄存器扩展成32位而得。 >>
  • 来源:www.lxway.com/4011240006.htm
  • N = 1表示结果为负数,N= 0表示结果为正数 z = 1表示结果为0,z = 0表示结果不为0 c表示有进位借位情况发生 v表示有溢出 I表示中断IRQ,F表示中断FIQ,T表示运行的状态,当T= 1表示运行在THUMB上,当T = 0 表示运行在ARM状态 后面的四位表示其中模式的选择
  • N = 1表示结果为负数,N= 0表示结果为正数 z = 1表示结果为0,z = 0表示结果不为0 c表示有进位借位情况发生 v表示有溢出 I表示中断IRQ,F表示中断FIQ,T表示运行的状态,当T= 1表示运行在THUMB上,当T = 0 表示运行在ARM状态 后面的四位表示其中模式的选择 >>
  • 来源:www.lxway.com/611982251.htm
  • 可能你已经注意到了,表 5-2 的 TCON 最后标注了“可位寻址”,而表 5-4 的 TMOD 标注的是“不可位寻址”。意思就是说:比如 TCON 有一个位叫 TR1,我们可以在程序中直接进行 TR1 = 1 这样的操作。但对 TMOD 里的位比如(T1)M1 = 1 这样的操作就是错误的。我们要操作就必须一次操作这整个字节,也就是必须一次性对 TMOD 所有位操作,不能对其中某一位单独进行操作,那么我们能不能只修改其中的一位而不影响其它位的值呢?当然可以
  • 可能你已经注意到了,表 5-2 的 TCON 最后标注了“可位寻址”,而表 5-4 的 TMOD 标注的是“不可位寻址”。意思就是说:比如 TCON 有一个位叫 TR1,我们可以在程序中直接进行 TR1 = 1 这样的操作。但对 TMOD 里的位比如(T1)M1 = 1 这样的操作就是错误的。我们要操作就必须一次操作这整个字节,也就是必须一次性对 TMOD 所有位操作,不能对其中某一位单独进行操作,那么我们能不能只修改其中的一位而不影响其它位的值呢?当然可以 >>
  • 来源:c.biancheng.net/cpp/html/1878.html
  • N = 1表示结果为负数,N= 0表示结果为正数 z = 1表示结果为0,z = 0表示结果不为0 c表示有进位借位情况发生 v表示有溢出 I表示中断IRQ,F表示中断FIQ,T表示运行的状态,当T= 1表示运行在THUMB上,当T = 0 表示运行在ARM状态 后面的四位表示其中模式的选择
  • N = 1表示结果为负数,N= 0表示结果为正数 z = 1表示结果为0,z = 0表示结果不为0 c表示有进位借位情况发生 v表示有溢出 I表示中断IRQ,F表示中断FIQ,T表示运行的状态,当T= 1表示运行在THUMB上,当T = 0 表示运行在ARM状态 后面的四位表示其中模式的选择 >>
  • 来源:www.lxway.com/611982251.htm
  • 1.往SD卡传数据量大,会占用很大的CPU资源,为了防止他一直占用CPU资源,我们用DMA来处理数据,这个速度也很快; 2.对于SD_PowerON()当中CMD*是对应寄存器中的命令, CMD0: 没有返回响应 我们的板子上往往只接了一个卡,但SDIO总线可以并联许多个卡 3.SDIO支持的端口电压是2.
  • 1.往SD卡传数据量大,会占用很大的CPU资源,为了防止他一直占用CPU资源,我们用DMA来处理数据,这个速度也很快; 2.对于SD_PowerON()当中CMD*是对应寄存器中的命令, CMD0: 没有返回响应 我们的板子上往往只接了一个卡,但SDIO总线可以并联许多个卡 3.SDIO支持的端口电压是2. >>
  • 来源:www.lxway.com/482496086.htm
  • 从上图可以看出,真正需要执行写操作的有两处,Step4 和 Step6 ,Step4首先写入寄存器的偏移地址,而Step6则是写入到该寄存器的值。由此已经很清楚了,对于写I2C寄存器,我们需要做的就是给 i2c_master_send 函数传入两个字节的数据即可,第一个字节为寄存器的地址,第二个字节为要写入寄存器的数据。示例如下:
  • 从上图可以看出,真正需要执行写操作的有两处,Step4 和 Step6 ,Step4首先写入寄存器的偏移地址,而Step6则是写入到该寄存器的值。由此已经很清楚了,对于写I2C寄存器,我们需要做的就是给 i2c_master_send 函数传入两个字节的数据即可,第一个字节为寄存器的地址,第二个字节为要写入寄存器的数据。示例如下: >>
  • 来源:www.68idc.cn/help/makewebs/asks/20140604102813.html
  • 摘要:本文主要介绍了智能图像传感器DVT的在线检测,并且对检测结果获取、传输方面技术进行了说明,以及智能传感器和外围设备之间通信的研究。表明其获取结果多样性。本文举例应用智能传感器DVT630对工件小孔定位、半径测量,实验表明此传感器灵活性高,检测结果准确,提高工业流水生长线上的检测效率。 1、引言 DVT机器视觉系统,是能够代替人眼的计算机系统,是为适应图像、字符自动化生产线的检测和监控而研究开发的。 在高速、批量、连续的自动化生产过程中,往往需要视觉系统进行OCR字符及各种号码识别、质量检查、色彩与几
  • 摘要:本文主要介绍了智能图像传感器DVT的在线检测,并且对检测结果获取、传输方面技术进行了说明,以及智能传感器和外围设备之间通信的研究。表明其获取结果多样性。本文举例应用智能传感器DVT630对工件小孔定位、半径测量,实验表明此传感器灵活性高,检测结果准确,提高工业流水生长线上的检测效率。 1、引言 DVT机器视觉系统,是能够代替人眼的计算机系统,是为适应图像、字符自动化生产线的检测和监控而研究开发的。 在高速、批量、连续的自动化生产过程中,往往需要视觉系统进行OCR字符及各种号码识别、质量检查、色彩与几 >>
  • 来源:www.dt365.com/Article/HTML/20120705213327_9469.html
  • 前段时间做了个迷你电子称跟大家分享一下。 当时设计的时候想着用两节五号干电池让它工作,综合了一下成本,选用了STC15W408AS 20P 做主控,采用74HC595串口驱动数码管做显示。 不得不在这里赞扬一下STC15W408AS这个单片机,个人认为它价格便宜,功能强大,引脚少,更重要的是工作电压是5.
  • 前段时间做了个迷你电子称跟大家分享一下。 当时设计的时候想着用两节五号干电池让它工作,综合了一下成本,选用了STC15W408AS 20P 做主控,采用74HC595串口驱动数码管做显示。 不得不在这里赞扬一下STC15W408AS这个单片机,个人认为它价格便宜,功能强大,引脚少,更重要的是工作电压是5. >>
  • 来源:www.ndiy.cn/forum.php?mod=viewthread&tid=33868&highlight=STC15W
  • 步进电机内部结构如图1所示:  如何能使它转起来呢?一搬有两种方法: 1.单相驱动:一相一相驱动,线圈加高电平顺序是:黄蓝红橙;或是:橙红蓝黄。其中黑白接地。 2.双相驱动:当要求电动机输出大功率时可以两相两相同时驱动,线圈加高电平顺序为:黄+红蓝+橙;或是:橙+蓝红+黄。 了解步进电机的驱动方式后、我想到了用移位寄存器产生移位脉冲来让步进电机动起来。电路如图2。  图2是通过拨码开关控制74LS194使Q0、Q1、Q2、Q3产生上面提过的两种移位脉冲来控制U1(光电耦合器
  • 步进电机内部结构如图1所示: 如何能使它转起来呢?一搬有两种方法: 1.单相驱动:一相一相驱动,线圈加高电平顺序是:黄蓝红橙;或是:橙红蓝黄。其中黑白接地。 2.双相驱动:当要求电动机输出大功率时可以两相两相同时驱动,线圈加高电平顺序为:黄+红蓝+橙;或是:橙+蓝红+黄。 了解步进电机的驱动方式后、我想到了用移位寄存器产生移位脉冲来让步进电机动起来。电路如图2。 图2是通过拨码开关控制74LS194使Q0、Q1、Q2、Q3产生上面提过的两种移位脉冲来控制U1(光电耦合器 >>
  • 来源:www.zxskj.cn/dianzi/zidongkongzhidianlu/1316.html
  • 从上面的算法可以看出,处理数据的采样时钟对每一个抽头来说都是并行的,并且加法器和移位寄存器采用级联方式,完成了累加器的功能,综合了加法器和移位寄存器的优点,而且这种算法的各级结构相同,方便扩展,实现了任意阶数的滤波器。算法中,真正点用系统资源的是乘法器。如果将系数量化成二进制,就能采用移位寄存器和加法器实现乘法功能。对于一个特定的滤波器,由于它有固定的系数,乘法功能就是一个长数乘法器。下面将讨论乘法器的设计问题。 2 FIR并行滤波器的乘法器设计 在并行滤波器的设计中,每一个乘法器的一端输入数据,另一端为
  • 从上面的算法可以看出,处理数据的采样时钟对每一个抽头来说都是并行的,并且加法器和移位寄存器采用级联方式,完成了累加器的功能,综合了加法器和移位寄存器的优点,而且这种算法的各级结构相同,方便扩展,实现了任意阶数的滤波器。算法中,真正点用系统资源的是乘法器。如果将系数量化成二进制,就能采用移位寄存器和加法器实现乘法功能。对于一个特定的滤波器,由于它有固定的系数,乘法功能就是一个长数乘法器。下面将讨论乘法器的设计问题。 2 FIR并行滤波器的乘法器设计 在并行滤波器的设计中,每一个乘法器的一端输入数据,另一端为 >>
  • 来源:xilinx.eetop.cn/?action-viewnews-itemid-144
  • <br>最近在使用DP83849实现百兆以太网通讯。上电后1s后进行100ms硬件复位,但是在通讯过程中,发现同一版程序,有时能正常通讯,而有时只在FPGA程序中加了个在线观测,就不能正常通讯了。在正常通讯时,A口和B口的灯都正常亮。不能通讯时,A口 SPEED灯亮,LINK和ACT灯灭,B口相反,SPPED灭,LINK和ACT灯亮。</p> <p>读取了BMCR值,A口X&ldquo;3100&rdquo;,B口X&ldquo;2100&rdquo
  • <br>最近在使用DP83849实现百兆以太网通讯。上电后1s后进行100ms硬件复位,但是在通讯过程中,发现同一版程序,有时能正常通讯,而有时只在FPGA程序中加了个在线观测,就不能正常通讯了。在正常通讯时,A口和B口的灯都正常亮。不能通讯时,A口 SPEED灯亮,LINK和ACT灯灭,B口相反,SPPED灭,LINK和ACT灯亮。</p> <p>读取了BMCR值,A口X&ldquo;3100&rdquo;,B口X&ldquo;2100&rdquo >>
  • 来源:www.deyisupport.com/question_answer/analog/interface_and_clocks/f/59/t/104338.aspx
  • 由若干个正沿D触发器构成的一次能存储多位二进制代码的时序逻辑电路,叫寄存器。寄存器用于存储一组二进制数。 缓冲寄存器(buffer)  4位缓冲寄存器 工作原理:设有二进制(4位)数X3X2X1X0要存到缓冲器中。此Buffer 由D Register组成,将X送到Q端,CLK正沿未到Q3Q1不受X3X0影响,保持原状。 CLK到Q_传送给X,由Y输出, 这样将数据装到寄存器中。 弊端:X要送到Q端,只受CLK控制,即只要将X加到D端。CLK一到立即送到Q去,数据被冲掉,不可控。为此增设一个可控的门:L门
  • 由若干个正沿D触发器构成的一次能存储多位二进制代码的时序逻辑电路,叫寄存器。寄存器用于存储一组二进制数。 缓冲寄存器(buffer) 4位缓冲寄存器 工作原理:设有二进制(4位)数X3X2X1X0要存到缓冲器中。此Buffer 由D Register组成,将X送到Q端,CLK正沿未到Q3Q1不受X3X0影响,保持原状。 CLK到Q_传送给X,由Y输出, 这样将数据装到寄存器中。 弊端:X要送到Q端,只受CLK控制,即只要将X加到D端。CLK一到立即送到Q去,数据被冲掉,不可控。为此增设一个可控的门:L门 >>
  • 来源:www.science.globalsino.com/1/1science9355.html
  • 产品功能:整合的通讯功能,内建1组RS-232,2组RS-485通讯端口,均支持MODBUS主/从站模式;新推出DVP32ES2-C:CANopen1Mbps通讯型主机,以及DVP30EX2:模拟/温度混合型主机;DVP-ES2提供16/20/24/32/40/60点I/O主机,满足各种应用;DVP20EX2内置12-bit4AI/2AO,同时可搭配14-bitAIO扩展模块,配合内建PIDAutoTuning功能,提供完整的模拟控制解决方案;DVP30EX2提供模拟/温控整合型控制器,内置16-bit3
  • 产品功能:整合的通讯功能,内建1组RS-232,2组RS-485通讯端口,均支持MODBUS主/从站模式;新推出DVP32ES2-C:CANopen1Mbps通讯型主机,以及DVP30EX2:模拟/温度混合型主机;DVP-ES2提供16/20/24/32/40/60点I/O主机,满足各种应用;DVP20EX2内置12-bit4AI/2AO,同时可搭配14-bitAIO扩展模块,配合内建PIDAutoTuning功能,提供完整的模拟控制解决方案;DVP30EX2提供模拟/温控整合型控制器,内置16-bit3 >>
  • 来源:www.cfs1688.com/Products/tdplcbzxmnhhxzjdvpes.html
  •   从上图可以看出,真正需要执行写操作的有两处,Step4 和 Step6 ,Step4首先写入寄存器的偏移地址,而Step6则是写入到该寄存器的值。由此已经很清楚了,对于写I2C寄存器,我们需要做的就是给 i2c_master_send 函数传入两个字节的数据即可,第一个字节为寄存器的地址,第二个字节为要写入寄存器的数据。示例如下:    staticint tvp5158_i2c_write( struct i2c_client* client,uint8_t reg,uint8_t data) {
  •   从上图可以看出,真正需要执行写操作的有两处,Step4 和 Step6 ,Step4首先写入寄存器的偏移地址,而Step6则是写入到该寄存器的值。由此已经很清楚了,对于写I2C寄存器,我们需要做的就是给 i2c_master_send 函数传入两个字节的数据即可,第一个字节为寄存器的地址,第二个字节为要写入寄存器的数据。示例如下:    staticint tvp5158_i2c_write( struct i2c_client* client,uint8_t reg,uint8_t data) { >>
  • 来源:www.educity.cn/linux/1609771.html
  • 看门狗定时器WDT是一片内自振荡式RC振荡器,即使外部振荡器被关闭(即工作在休眠模式),WDT也一直在计数。当WDT被使能,无论是在工作模式或休眠模式,若WDT超时,都将导致单片机复位,因此WDT主要用来防止单片机系统失控,一般WDT基本溢出周期约18ms(PAB=0),最大溢出周期约2.
  • 看门狗定时器WDT是一片内自振荡式RC振荡器,即使外部振荡器被关闭(即工作在休眠模式),WDT也一直在计数。当WDT被使能,无论是在工作模式或休眠模式,若WDT超时,都将导致单片机复位,因此WDT主要用来防止单片机系统失控,一般WDT基本溢出周期约18ms(PAB=0),最大溢出周期约2. >>
  • 来源:www.zsgbailin.com/emjg2.htm