• 这是一个关于电子科学与技术介绍ppt模板,主要介绍时序逻辑电路的基本概念、时序逻辑电路的一般分析方法、计数器、时序逻辑电路的设计方法。欢迎点击下载哦。 PPT预览   PPT内容 第六章 时序逻辑电路 6.1 时序逻辑电路的基本概念 一、 时序逻辑电路的结构及特点 时序逻辑电路——任何一个时刻的输出状态不仅取决于当时的输入信号,还与电路的原状态有关。 时序电路的特点:(1)含有具有记忆元件(最常用的是触发器)。(2)具有反馈通道。 6.
  • 这是一个关于电子科学与技术介绍ppt模板,主要介绍时序逻辑电路的基本概念、时序逻辑电路的一般分析方法、计数器、时序逻辑电路的设计方法。欢迎点击下载哦。 PPT预览 PPT内容 第六章 时序逻辑电路 6.1 时序逻辑电路的基本概念 一、 时序逻辑电路的结构及特点 时序逻辑电路——任何一个时刻的输出状态不仅取决于当时的输入信号,还与电路的原状态有关。 时序电路的特点:(1)含有具有记忆元件(最常用的是触发器)。(2)具有反馈通道。 6. >>
  • 来源:www.pptok.com/pptok/20161224131083.html
  • 4 综合 (1)将Design窗口中的View项切换为Implementation,然后选中顶层文件,在下面的Processes窗口中就会出现综合实现的工具选项。这里双击Synthesize  XST就开始运行综合了。  图12 综合 综合过程中出现的各种警告或是错误报告会出现在Console窗口中,综合完成后状态显示为 ,双击Errors and Warnings中的 就可以打开综合报告。 双击View RTL Schematic,打开设计综合后的RTL级视图。双击后会弹出下图所示的对话框,第一个是打开
  • 4 综合 (1)将Design窗口中的View项切换为Implementation,然后选中顶层文件,在下面的Processes窗口中就会出现综合实现的工具选项。这里双击Synthesize XST就开始运行综合了。 图12 综合 综合过程中出现的各种警告或是错误报告会出现在Console窗口中,综合完成后状态显示为 ,双击Errors and Warnings中的 就可以打开综合报告。 双击View RTL Schematic,打开设计综合后的RTL级视图。双击后会弹出下图所示的对话框,第一个是打开 >>
  • 来源:articles.e-works.net.cn/EDA/Article89309_2.htm
  • 基于上述基本原理,将这种移位寄存器结构扩展到整个FFT系统的各级,可以发现各级使用的移位寄存器数量是递减的。现使用一个8点结构来进行说明。 如图3所示,数据由输入l和输入2进入第一级。通过开关进行选通控制。由于是N=8的运算,所以各级分别加入4级、2级和1级的移位寄存器。
  • 基于上述基本原理,将这种移位寄存器结构扩展到整个FFT系统的各级,可以发现各级使用的移位寄存器数量是递减的。现使用一个8点结构来进行说明。 如图3所示,数据由输入l和输入2进入第一级。通过开关进行选通控制。由于是N=8的运算,所以各级分别加入4级、2级和1级的移位寄存器。 >>
  • 来源:xilinx.eetop.cn/viewnews-146
  •   Aune X1S是HiFiDIY近期推出的一款外置解码器产品,是Aune X1系列的全面升级换代产品,支持RCA模拟输出、6.3mm耳机输出,以及RCA模拟输入作为耳机放大器使用,支持SPDIF光纤和RCA同轴数字输入解码使用.Aune X1S的USB部分以XMOS xCore系列产品为主控,使用USB时最高支持32bit384kHz和DSD128的数字音频解码能力,同轴和光纤输入支持至24bit192kHz,并支持SPDIF同轴输出.
  •   Aune X1S是HiFiDIY近期推出的一款外置解码器产品,是Aune X1系列的全面升级换代产品,支持RCA模拟输出、6.3mm耳机输出,以及RCA模拟输入作为耳机放大器使用,支持SPDIF光纤和RCA同轴数字输入解码使用.Aune X1S的USB部分以XMOS xCore系列产品为主控,使用USB时最高支持32bit384kHz和DSD128的数字音频解码能力,同轴和光纤输入支持至24bit192kHz,并支持SPDIF同轴输出. >>
  • 来源:www.hifidiy.net/index.php?s=/Home/Article/detail/id/15386.html
  • 处理。  在图8.8.3中还画出了第5到第8个时钟脉冲作用下,输入数码在寄存器中移位的波形(如图8.8.2所示)。由图可见,在第8个时钟脉冲作用后,数码从Q3端已全部移出寄存器。这说明存入该寄存器中的数码也可以从Q端串行输出。根据需要,可用更多的触发器组成多位移位寄存器。 除了用边沿D 触发器外,还可用其他类型的触发器来组成移位寄存器,例如,用主从JK 触发器来组成移位寄存器,其级间连接方式如图8.
  • 处理。 在图8.8.3中还画出了第5到第8个时钟脉冲作用下,输入数码在寄存器中移位的波形(如图8.8.2所示)。由图可见,在第8个时钟脉冲作用后,数码从Q3端已全部移出寄存器。这说明存入该寄存器中的数码也可以从Q端串行输出。根据需要,可用更多的触发器组成多位移位寄存器。 除了用边沿D 触发器外,还可用其他类型的触发器来组成移位寄存器,例如,用主从JK 触发器来组成移位寄存器,其级间连接方式如图8. >>
  • 来源:www.pw0.cn/baike/jidianqi/20161059683.html
  • 1.高效易用的数字电路基础实验平台 系统由通用实验单元、专用实验单元、信号源、逻辑电平开关和显示单元、数码管显示单元、元器件单元、逻辑笔单元等构成数字电路基础实验平台。实验单元布局合理,标示清晰,其实验连接点以锥孔连接器的形式引出,可通过不同的组合构成相应的实验电路,操作简便,具有极高的实验效率和成功率。  2.完善的数字系统设计实验平台 选配CPLD开发板,就可构成支持数字系统设计的EDA实验教学平台。它将传统小规模集成逻辑器件与新型大规模可编程逻辑器件CPLD相结合,可使学生学习可编程逻辑器件的使用及
  • 1.高效易用的数字电路基础实验平台 系统由通用实验单元、专用实验单元、信号源、逻辑电平开关和显示单元、数码管显示单元、元器件单元、逻辑笔单元等构成数字电路基础实验平台。实验单元布局合理,标示清晰,其实验连接点以锥孔连接器的形式引出,可通过不同的组合构成相应的实验电路,操作简便,具有极高的实验效率和成功率。 2.完善的数字系统设计实验平台 选配CPLD开发板,就可构成支持数字系统设计的EDA实验教学平台。它将传统小规模集成逻辑器件与新型大规模可编程逻辑器件CPLD相结合,可使学生学习可编程逻辑器件的使用及 >>
  • 来源:www.tangdu.com/product-single.asp?productNumberid=4263W96049
  • <br>最近在使用DP83849实现百兆以太网通讯。上电后1s后进行100ms硬件复位,但是在通讯过程中,发现同一版程序,有时能正常通讯,而有时只在FPGA程序中加了个在线观测,就不能正常通讯了。在正常通讯时,A口和B口的灯都正常亮。不能通讯时,A口 SPEED灯亮,LINK和ACT灯灭,B口相反,SPPED灭,LINK和ACT灯亮。</p> <p>读取了BMCR值,A口X&ldquo;3100&rdquo;,B口X&ldquo;2100&rdquo
  • <br>最近在使用DP83849实现百兆以太网通讯。上电后1s后进行100ms硬件复位,但是在通讯过程中,发现同一版程序,有时能正常通讯,而有时只在FPGA程序中加了个在线观测,就不能正常通讯了。在正常通讯时,A口和B口的灯都正常亮。不能通讯时,A口 SPEED灯亮,LINK和ACT灯灭,B口相反,SPPED灭,LINK和ACT灯亮。</p> <p>读取了BMCR值,A口X&ldquo;3100&rdquo;,B口X&ldquo;2100&rdquo >>
  • 来源:www.deyisupport.com/question_answer/analog/interface_and_clocks/f/59/t/104338.aspx
  •   寄存器是用来暂时存放数码的,是由 构成的。一个触发器只能存储1位二进制数,要存放 九位二进制数时,就需用瓦个触发器。按照功能的不同,寄存器可分为数码寄存器和移位寄存器。数码寄 存器具有寄存数码的功能,雨移位寄存器不仅有寄存数码的功能,还有移位的功能。移位寄存器中的数据 可以在移位脉冲作用下依次逐位右移或左移,数据既可以并行输入、并行输出,也可以串行输入、串行输 出,还可以并行输人、串行输出,串行输人、并行输出,输人输出方式十分灵活,用途也很广。根据移位 情况不同,移位寄存器分为单向移位寄存器(左移寄存
  •   寄存器是用来暂时存放数码的,是由 构成的。一个触发器只能存储1位二进制数,要存放 九位二进制数时,就需用瓦个触发器。按照功能的不同,寄存器可分为数码寄存器和移位寄存器。数码寄 存器具有寄存数码的功能,雨移位寄存器不仅有寄存数码的功能,还有移位的功能。移位寄存器中的数据 可以在移位脉冲作用下依次逐位右移或左移,数据既可以并行输入、并行输出,也可以串行输入、串行输 出,还可以并行输人、串行输出,串行输人、并行输出,输人输出方式十分灵活,用途也很广。根据移位 情况不同,移位寄存器分为单向移位寄存器(左移寄存 >>
  • 来源:www.gdjyw.com/web-shebei/dianqidianlujichu/15784.html
  • 本系统采用常见的51单片机作为主控芯片,程序开始对单片机初始化,再对12864液晶初始化和始终芯片ds1302初始化后主控芯片就一直检测卡片传过来的信息并对其解码还原成卡号。并通过按键检测来识别身份和与内部存储的卡号对比来控制继电器的开关模拟门禁系统。通过程序来读取DS1302内部寄存器的数值来显示时间。 本程序是外部电路接收到开卡发回来的曼码与单片机接口相连,单片机检测输入的高低电平的跳变来还原成卡号。具体10跳变解码成1,01跳变解码成0.
  • 本系统采用常见的51单片机作为主控芯片,程序开始对单片机初始化,再对12864液晶初始化和始终芯片ds1302初始化后主控芯片就一直检测卡片传过来的信息并对其解码还原成卡号。并通过按键检测来识别身份和与内部存储的卡号对比来控制继电器的开关模拟门禁系统。通过程序来读取DS1302内部寄存器的数值来显示时间。 本程序是外部电路接收到开卡发回来的曼码与单片机接口相连,单片机检测输入的高低电平的跳变来还原成卡号。具体10跳变解码成1,01跳变解码成0. >>
  • 来源:www.9mcu.com/9mcubbs/forum.php?mod=viewthread&tid=1043948
  • 1、显示模块 (1)静态显示 静态显示的优点是编程容易,管理简单,亮度较高。但是占用口线资源较多。 (2)动态显示 动态显示就是一位一位地轮流点亮显示器各个位(扫描),对于显示器的每一位来说,每隔一段时间点亮一次。显示器的亮度既与导通电流有关,也与点亮时间和间隔时间的比例有关。调整电流和时间参数,可实现亮度较高较稳定的显示。 扫描显示方式,即在某一时刻,只让某一位的位选线处于选通状态,而其它各位的位选线处于关闭状态,同时,段选线上输出相应位要显示字符的字型码,这样同一时刻,4位LED中只有选通的那一位显示
  • 1、显示模块 (1)静态显示 静态显示的优点是编程容易,管理简单,亮度较高。但是占用口线资源较多。 (2)动态显示 动态显示就是一位一位地轮流点亮显示器各个位(扫描),对于显示器的每一位来说,每隔一段时间点亮一次。显示器的亮度既与导通电流有关,也与点亮时间和间隔时间的比例有关。调整电流和时间参数,可实现亮度较高较稳定的显示。 扫描显示方式,即在某一时刻,只让某一位的位选线处于选通状态,而其它各位的位选线处于关闭状态,同时,段选线上输出相应位要显示字符的字型码,这样同一时刻,4位LED中只有选通的那一位显示 >>
  • 来源:www.avrvi.com/class/dianyadianliu/essay%20summary.htm
  • 由若干个正沿D触发器构成的一次能存储多位二进制代码的时序逻辑电路,叫寄存器。寄存器用于存储一组二进制数。 缓冲寄存器(buffer)  4位缓冲寄存器 工作原理:设有二进制(4位)数X3X2X1X0要存到缓冲器中。此Buffer 由D Register组成,将X送到Q端,CLK正沿未到Q3Q1不受X3X0影响,保持原状。 CLK到Q_传送给X,由Y输出, 这样将数据装到寄存器中。 弊端:X要送到Q端,只受CLK控制,即只要将X加到D端。CLK一到立即送到Q去,数据被冲掉,不可控。为此增设一个可控的门:L门
  • 由若干个正沿D触发器构成的一次能存储多位二进制代码的时序逻辑电路,叫寄存器。寄存器用于存储一组二进制数。 缓冲寄存器(buffer) 4位缓冲寄存器 工作原理:设有二进制(4位)数X3X2X1X0要存到缓冲器中。此Buffer 由D Register组成,将X送到Q端,CLK正沿未到Q3Q1不受X3X0影响,保持原状。 CLK到Q_传送给X,由Y输出, 这样将数据装到寄存器中。 弊端:X要送到Q端,只受CLK控制,即只要将X加到D端。CLK一到立即送到Q去,数据被冲掉,不可控。为此增设一个可控的门:L门 >>
  • 来源:www.science.globalsino.com/1/1science9355.html
  • 使用DSP28335外部接口控制DAC8728,遇到以下几个问题,希望得到大家宝贵的意见: 1、数据手册上说Offset DAC-A Data Register 和 Offset DAC-B Data Register 的默认值都是0x999A:  但是程序读回来的分别是0x999B 和 0X999A,如下图:   2、DAC Input Data Register 能写入,并且写入后读回来的值与写入的一致,但是DAC输出没有变化。 大家有没有遇到过相似的情况的,希望多多提供宝贵的建议,万分感谢!
  • 使用DSP28335外部接口控制DAC8728,遇到以下几个问题,希望得到大家宝贵的意见: 1、数据手册上说Offset DAC-A Data Register 和 Offset DAC-B Data Register 的默认值都是0x999A: 但是程序读回来的分别是0x999B 和 0X999A,如下图: 2、DAC Input Data Register 能写入,并且写入后读回来的值与写入的一致,但是DAC输出没有变化。 大家有没有遇到过相似的情况的,希望多多提供宝贵的建议,万分感谢! >>
  • 来源:www.deyisupport.com/question_answer/microcontrollers/c2000/f/56/p/82536/210224.aspx
  • 标志寄存器中存放的有条件标志,也有控制标志,它对于处理器的运行和整个过程的控制有着非常重要的作用。条件标志主要包括进位标志、奇偶标志、辅助进位标志、零标志、符号标志、溢出标志等等,控制标志主要有跟踪标志、中断标志、方向标志等等,每个标志都有不同的特色,在实际运用的过程中也能发挥不同的功效。 标志寄存器有一个很大的用处,那就是它能够利用上面的标志来让用户了解此时cpu所处的状态。如果标志是of的话,这就是溢出标志,如果符号的加减运算结果超出了所能运算的范围的话,就是溢出了,而且此时of的值就是固定的,也就是
  • 标志寄存器中存放的有条件标志,也有控制标志,它对于处理器的运行和整个过程的控制有着非常重要的作用。条件标志主要包括进位标志、奇偶标志、辅助进位标志、零标志、符号标志、溢出标志等等,控制标志主要有跟踪标志、中断标志、方向标志等等,每个标志都有不同的特色,在实际运用的过程中也能发挥不同的功效。 标志寄存器有一个很大的用处,那就是它能够利用上面的标志来让用户了解此时cpu所处的状态。如果标志是of的话,这就是溢出标志,如果符号的加减运算结果超出了所能运算的范围的话,就是溢出了,而且此时of的值就是固定的,也就是 >>
  • 来源:news.17house.com/article-45828-1.html
  • 步进电机内部结构如图1所示:  如何能使它转起来呢?一搬有两种方法: 1.单相驱动:一相一相驱动,线圈加高电平顺序是:黄蓝红橙;或是:橙红蓝黄。其中黑白接地。 2.双相驱动:当要求电动机输出大功率时可以两相两相同时驱动,线圈加高电平顺序为:黄+红蓝+橙;或是:橙+蓝红+黄。 了解步进电机的驱动方式后、我想到了用移位寄存器产生移位脉冲来让步进电机动起来。电路如图2。  图2是通过拨码开关控制74LS194使Q0、Q1、Q2、Q3产生上面提过的两种移位脉冲来控制U1(光电耦合器
  • 步进电机内部结构如图1所示: 如何能使它转起来呢?一搬有两种方法: 1.单相驱动:一相一相驱动,线圈加高电平顺序是:黄蓝红橙;或是:橙红蓝黄。其中黑白接地。 2.双相驱动:当要求电动机输出大功率时可以两相两相同时驱动,线圈加高电平顺序为:黄+红蓝+橙;或是:橙+蓝红+黄。 了解步进电机的驱动方式后、我想到了用移位寄存器产生移位脉冲来让步进电机动起来。电路如图2。 图2是通过拨码开关控制74LS194使Q0、Q1、Q2、Q3产生上面提过的两种移位脉冲来控制U1(光电耦合器 >>
  • 来源:www.zxskj.cn/dianzi/zidongkongzhidianlu/1316.html
  • (255)  贴片/片式开关(15) 轻触开关(47) 自锁开关(6) 微动开关(31) 薄膜/金属弹片开关(1) 直键开关(1) 船形/跷板/波动开关(3) 按钮/按键开关(1) 检测开关(2) 拨动/滑动开关(57) 推推式电源开关(25) DIP/拨码开关(3) (手机)天线开关(1) 舌簧/干簧管(磁控管)开关(10) 侧按开关(1) 触摸/感应开关(1) 霍尔开关(6) 光电开关(8) 定时/时控开关(6) 遥控开关(2) 接近开关(2) 空气开关(14) 倒顺开关(2) 液位/水位/料位开关(
  • (255) 贴片/片式开关(15) 轻触开关(47) 自锁开关(6) 微动开关(31) 薄膜/金属弹片开关(1) 直键开关(1) 船形/跷板/波动开关(3) 按钮/按键开关(1) 检测开关(2) 拨动/滑动开关(57) 推推式电源开关(25) DIP/拨码开关(3) (手机)天线开关(1) 舌簧/干簧管(磁控管)开关(10) 侧按开关(1) 触摸/感应开关(1) 霍尔开关(6) 光电开关(8) 定时/时控开关(6) 遥控开关(2) 接近开关(2) 空气开关(14) 倒顺开关(2) 液位/水位/料位开关( >>
  • 来源:product.dzsc.com/product/infomation/123460/201251211212699.html
  • 1、时序图 2、控制字 3、寄存器地址与RAM地址 4、代码 时序图  控制字  寄存器与RAM  代码: #include <reg52.h> #include <intrins.h> sbit dm = P2^2; //段码 sbit wm = P2^3; //位码 sbit st = P1^6; //使能(RST) sbit cl = P1^4; //时钟管脚(CLK) sbit da = P1^5; //i/o管脚(数据管脚)(i/o) /*这两个函数就这时钟芯片的精髓*/
  • 1、时序图 2、控制字 3、寄存器地址与RAM地址 4、代码 时序图 控制字 寄存器与RAM 代码: #include <reg52.h> #include <intrins.h> sbit dm = P2^2; //段码 sbit wm = P2^3; //位码 sbit st = P1^6; //使能(RST) sbit cl = P1^4; //时钟管脚(CLK) sbit da = P1^5; //i/o管脚(数据管脚)(i/o) /*这两个函数就这时钟芯片的精髓*/ >>
  • 来源:www.51hei.com/bbs/dpj-30428-1.html
  • Nios嵌入式处理器系统由Nios嵌入式处理器、DMA控制器、数据存储区SDRAM、程序存储区F1ash和Avalon总线构成。其中DMA控制器用于实现两个存储器之间,或者存储器和外设之间,或者是两个外设之间的直接数据传输。DMA模块用于连接支持流模式传输的外设,并允许定长或变长的数据传输,而不需要CPU的干涉。在Ultra DMA数据传输的过程中,可以一次性传输最多256个扇区的数据,所以在系统中使用DMA控制器可以方便地在硬盘与系统中各种支持流传输模式的设备之间建立直通连接,提高系统的数据传输效率。
  • Nios嵌入式处理器系统由Nios嵌入式处理器、DMA控制器、数据存储区SDRAM、程序存储区F1ash和Avalon总线构成。其中DMA控制器用于实现两个存储器之间,或者存储器和外设之间,或者是两个外设之间的直接数据传输。DMA模块用于连接支持流模式传输的外设,并允许定长或变长的数据传输,而不需要CPU的干涉。在Ultra DMA数据传输的过程中,可以一次性传输最多256个扇区的数据,所以在系统中使用DMA控制器可以方便地在硬盘与系统中各种支持流传输模式的设备之间建立直通连接,提高系统的数据传输效率。 >>
  • 来源:www.mcu123.com/news/Article/ARMsource/ARM/200610/2366.html