• N = 1表示结果为负数,N= 0表示结果为正数 z = 1表示结果为0,z = 0表示结果不为0 c表示有进位借位情况发生 v表示有溢出 I表示中断IRQ,F表示中断FIQ,T表示运行的状态,当T= 1表示运行在THUMB上,当T = 0 表示运行在ARM状态 后面的四位表示其中模式的选择
  • N = 1表示结果为负数,N= 0表示结果为正数 z = 1表示结果为0,z = 0表示结果不为0 c表示有进位借位情况发生 v表示有溢出 I表示中断IRQ,F表示中断FIQ,T表示运行的状态,当T= 1表示运行在THUMB上,当T = 0 表示运行在ARM状态 后面的四位表示其中模式的选择 >>
  • 来源:www.lxway.com/611982251.htm
  • 将指定的[写入触发位地址]置ON,保存在人机界面中的采样数据会被写入内部寄存器。 如果取消勾选[模式]选项卡-扩展设置中的[在完成指定周期后覆盖原有数据]复选框,可以写入每个块。 写入采样数据  如果在[写入数据]选项卡中勾选[包括周期数],则会在起始地址中以二进制形式保存执行的采样周期数(保存的采样数据数)。 例如,如果周期数是5,当前采样轮次是2,那么[存储数据数]就是2。此时,对于样本3及以后的采样数据,将在保存区中保存0。 如果未勾选[包括周期数],则从起始地址起保存第1个采样数据。
  • 将指定的[写入触发位地址]置ON,保存在人机界面中的采样数据会被写入内部寄存器。 如果取消勾选[模式]选项卡-扩展设置中的[在完成指定周期后覆盖原有数据]复选框,可以写入每个块。 写入采样数据 如果在[写入数据]选项卡中勾选[包括周期数],则会在起始地址中以二进制形式保存执行的采样周期数(保存的采样数据数)。 例如,如果周期数是5,当前采样轮次是2,那么[存储数据数]就是2。此时,对于样本3及以后的采样数据,将在保存区中保存0。 如果未勾选[包括周期数],则从起始地址起保存第1个采样数据。 >>
  • 来源:www.proface.com.cn/otasuke/files/manual/gpproex/new/refer/mergedProjects/sampling/sampling_mm_internaldeviceoperations.htm
  • cpsr分为四个域,每个域有8位的宽度:flags,status,extension和control.control域包含处理器模式和状态以及中断屏蔽位.flags域包含condition flags.处理器模式决定了当前哪些寄存器是可用的以及cpsr本身的访问权限. 当发生异常时,arm会自动将cpsr保存到spsr寄存器中。 二、 处理器模式 处理器模式分为特权模式和非特权模式:特权模式对cpsr有完全的读写控制.
  • cpsr分为四个域,每个域有8位的宽度:flags,status,extension和control.control域包含处理器模式和状态以及中断屏蔽位.flags域包含condition flags.处理器模式决定了当前哪些寄存器是可用的以及cpsr本身的访问权限. 当发生异常时,arm会自动将cpsr保存到spsr寄存器中。 二、 处理器模式 处理器模式分为特权模式和非特权模式:特权模式对cpsr有完全的读写控制. >>
  • 来源:www.lxway.com/4469062894.htm
  • 本系统采用常见的51单片机作为主控芯片,程序开始对单片机初始化,再对12864液晶初始化和始终芯片ds1302初始化后主控芯片就一直检测卡片传过来的信息并对其解码还原成卡号。并通过按键检测来识别身份和与内部存储的卡号对比来控制继电器的开关模拟门禁系统。通过程序来读取DS1302内部寄存器的数值来显示时间。 本程序是外部电路接收到开卡发回来的曼码与单片机接口相连,单片机检测输入的高低电平的跳变来还原成卡号。具体10跳变解码成1,01跳变解码成0.
  • 本系统采用常见的51单片机作为主控芯片,程序开始对单片机初始化,再对12864液晶初始化和始终芯片ds1302初始化后主控芯片就一直检测卡片传过来的信息并对其解码还原成卡号。并通过按键检测来识别身份和与内部存储的卡号对比来控制继电器的开关模拟门禁系统。通过程序来读取DS1302内部寄存器的数值来显示时间。 本程序是外部电路接收到开卡发回来的曼码与单片机接口相连,单片机检测输入的高低电平的跳变来还原成卡号。具体10跳变解码成1,01跳变解码成0. >>
  • 来源:www.9mcu.com/9mcubbs/forum.php?mod=viewthread&tid=1043948
  • 4 综合 (1)将Design窗口中的View项切换为Implementation,然后选中顶层文件,在下面的Processes窗口中就会出现综合实现的工具选项。这里双击Synthesize  XST就开始运行综合了。  图12 综合 综合过程中出现的各种警告或是错误报告会出现在Console窗口中,综合完成后状态显示为 ,双击Errors and Warnings中的 就可以打开综合报告。 双击View RTL Schematic,打开设计综合后的RTL级视图。双击后会弹出下图所示的对话框,第一个是打开
  • 4 综合 (1)将Design窗口中的View项切换为Implementation,然后选中顶层文件,在下面的Processes窗口中就会出现综合实现的工具选项。这里双击Synthesize XST就开始运行综合了。 图12 综合 综合过程中出现的各种警告或是错误报告会出现在Console窗口中,综合完成后状态显示为 ,双击Errors and Warnings中的 就可以打开综合报告。 双击View RTL Schematic,打开设计综合后的RTL级视图。双击后会弹出下图所示的对话框,第一个是打开 >>
  • 来源:articles.e-works.net.cn/EDA/Article89309_2.htm
  • N = 1表示结果为负数,N= 0表示结果为正数 z = 1表示结果为0,z = 0表示结果不为0 c表示有进位借位情况发生 v表示有溢出 I表示中断IRQ,F表示中断FIQ,T表示运行的状态,当T= 1表示运行在THUMB上,当T = 0 表示运行在ARM状态 后面的四位表示其中模式的选择
  • N = 1表示结果为负数,N= 0表示结果为正数 z = 1表示结果为0,z = 0表示结果不为0 c表示有进位借位情况发生 v表示有溢出 I表示中断IRQ,F表示中断FIQ,T表示运行的状态,当T= 1表示运行在THUMB上,当T = 0 表示运行在ARM状态 后面的四位表示其中模式的选择 >>
  • 来源:www.lxway.com/611982251.htm
  • 了解一款芯片,最基本的就是要了解它的寄存器。大家不要因为80386是32位处理器,就认为它的寄存器都是32位的。其实它的寄存器相当的复杂。不仅有32位的,还有16位的,48位的,乃至64位的。80386共有34个寄存器,可分为七类。它们分别是通用寄存器、指令指针和标志寄存器、段寄存器、系统地址寄存器、控制寄存器、调试和测试寄存器。以下是部分常用的寄存器: 一、通用寄存器(8个) 80386有8个32位的通用寄存器,这8个通用寄存器都是由8088/8086/80286的相应16位通用寄存器扩展成32位而得。
  • 了解一款芯片,最基本的就是要了解它的寄存器。大家不要因为80386是32位处理器,就认为它的寄存器都是32位的。其实它的寄存器相当的复杂。不仅有32位的,还有16位的,48位的,乃至64位的。80386共有34个寄存器,可分为七类。它们分别是通用寄存器、指令指针和标志寄存器、段寄存器、系统地址寄存器、控制寄存器、调试和测试寄存器。以下是部分常用的寄存器: 一、通用寄存器(8个) 80386有8个32位的通用寄存器,这8个通用寄存器都是由8088/8086/80286的相应16位通用寄存器扩展成32位而得。 >>
  • 来源:www.61ic.com/Technology/embed/201304/48051.html
  • 处理器模式 用户模式(user)简称usr 快速中断模式(FIQ)简称fiq 外部中断模式(IRQ)简称irq 特权模式(supervisor)简称sve 数据访问终止模式(abort)简称abt 未定义指令后终止模式(undefined)简称und 除了用户模式以外,其他的模式成为特权模式,这些模式下,程序可以访问所有系统资源,也可以任意进行处理机模式 处理其模式可以通过软件进行控制,可以同国外部中断或者是异常处理进行切换,大多数的用户程序运行在用户模式下,这时候应用程序不能访问一些受系统保护的系统资源
  • 处理器模式 用户模式(user)简称usr 快速中断模式(FIQ)简称fiq 外部中断模式(IRQ)简称irq 特权模式(supervisor)简称sve 数据访问终止模式(abort)简称abt 未定义指令后终止模式(undefined)简称und 除了用户模式以外,其他的模式成为特权模式,这些模式下,程序可以访问所有系统资源,也可以任意进行处理机模式 处理其模式可以通过软件进行控制,可以同国外部中断或者是异常处理进行切换,大多数的用户程序运行在用户模式下,这时候应用程序不能访问一些受系统保护的系统资源 >>
  • 来源:www.cnblogs.com/fengdashen/p/3724709.html
  • 从上面的算法可以看出,处理数据的采样时钟对每一个抽头来说都是并行的,并且加法器和移位寄存器采用级联方式,完成了累加器的功能,综合了加法器和移位寄存器的优点,而且这种算法的各级结构相同,方便扩展,实现了任意阶数的滤波器。算法中,真正点用系统资源的是乘法器。如果将系数量化成二进制,就能采用移位寄存器和加法器实现乘法功能。对于一个特定的滤波器,由于它有固定的系数,乘法功能就是一个长数乘法器。下面将讨论乘法器的设计问题。 2 FIR并行滤波器的乘法器设计 在并行滤波器的设计中,每一个乘法器的一端输入数据,另一端为
  • 从上面的算法可以看出,处理数据的采样时钟对每一个抽头来说都是并行的,并且加法器和移位寄存器采用级联方式,完成了累加器的功能,综合了加法器和移位寄存器的优点,而且这种算法的各级结构相同,方便扩展,实现了任意阶数的滤波器。算法中,真正点用系统资源的是乘法器。如果将系数量化成二进制,就能采用移位寄存器和加法器实现乘法功能。对于一个特定的滤波器,由于它有固定的系数,乘法功能就是一个长数乘法器。下面将讨论乘法器的设计问题。 2 FIR并行滤波器的乘法器设计 在并行滤波器的设计中,每一个乘法器的一端输入数据,另一端为 >>
  • 来源:xilinx.eetop.cn/?action-viewnews-itemid-144
  • 1.I2C串行总线概述 I2C总线是PHLIPS公司推出的一种串行总线,是具备多主机系统所需的总线裁决和高低速器件同步功能的高性能串行总线.I2C总线只有两根双向信号线.一根是数据线SDA,另一根是时钟线SCL.   2.I2C总线通过上拉电阻接正电源.当总线空闲时,两根线均为高电平.连到总线上的任一器件输出的低电平,都将使总线的信号变低,即各器件的SD .
  • 1.I2C串行总线概述 I2C总线是PHLIPS公司推出的一种串行总线,是具备多主机系统所需的总线裁决和高低速器件同步功能的高性能串行总线.I2C总线只有两根双向信号线.一根是数据线SDA,另一根是时钟线SCL. 2.I2C总线通过上拉电阻接正电源.当总线空闲时,两根线均为高电平.连到总线上的任一器件输出的低电平,都将使总线的信号变低,即各器件的SD . >>
  • 来源:www.lxway.com/4010804094.htm
  • 了解一款芯片,最基本的就是要了解它的寄存器。大家不要因为80386是32位处理器,就认为它的寄存器都是32位的。其实它的寄存器相当的复杂。不仅有32位的,还有16位的,48位的,乃至64位的。80386共有34个寄存器,可分为七类。它们分别是通用寄存器、指令指针和标志寄存器、段寄存器、系统地址寄存器、控制寄存器、调试和测试寄存器。以下是部分常用的寄存器: 一、通用寄存器(8个) 80386有8个32位的通用寄存器,这8个通用寄存器都是由8088/8086/80286的相应16位通用寄存器扩展成32位而得。
  • 了解一款芯片,最基本的就是要了解它的寄存器。大家不要因为80386是32位处理器,就认为它的寄存器都是32位的。其实它的寄存器相当的复杂。不仅有32位的,还有16位的,48位的,乃至64位的。80386共有34个寄存器,可分为七类。它们分别是通用寄存器、指令指针和标志寄存器、段寄存器、系统地址寄存器、控制寄存器、调试和测试寄存器。以下是部分常用的寄存器: 一、通用寄存器(8个) 80386有8个32位的通用寄存器,这8个通用寄存器都是由8088/8086/80286的相应16位通用寄存器扩展成32位而得。 >>
  • 来源:www.lxway.com/4011240006.htm
  • DM8168的PWM是通过TIMx_OUT引脚输出的,需要对Timer进行配置才能有波形输出。 对Timer的时钟进行配置,确保Timer能正常工作。 设置寄存器之前关闭Timer。 设置定时溢出后的装载值。 设置比较值,该值决定PWM占空比。 设置internal counter值。 启动Timer。 启动DM8168过后,停在U-boot界面,使用U-boot的内存读写工具来进行调试。 一、修改CM_ALWON_TIMER_4_CLKC
  • DM8168的PWM是通过TIMx_OUT引脚输出的,需要对Timer进行配置才能有波形输出。 对Timer的时钟进行配置,确保Timer能正常工作。 设置寄存器之前关闭Timer。 设置定时溢出后的装载值。 设置比较值,该值决定PWM占空比。 设置internal counter值。 启动Timer。 启动DM8168过后,停在U-boot界面,使用U-boot的内存读写工具来进行调试。 一、修改CM_ALWON_TIMER_4_CLKC >>
  • 来源:www.lxway.com/115011806.htm
  • Nios嵌入式处理器系统由Nios嵌入式处理器、DMA控制器、数据存储区SDRAM、程序存储区F1ash和Avalon总线构成。其中DMA控制器用于实现两个存储器之间,或者存储器和外设之间,或者是两个外设之间的直接数据传输。DMA模块用于连接支持流模式传输的外设,并允许定长或变长的数据传输,而不需要CPU的干涉。在Ultra DMA数据传输的过程中,可以一次性传输最多256个扇区的数据,所以在系统中使用DMA控制器可以方便地在硬盘与系统中各种支持流传输模式的设备之间建立直通连接,提高系统的数据传输效率。
  • Nios嵌入式处理器系统由Nios嵌入式处理器、DMA控制器、数据存储区SDRAM、程序存储区F1ash和Avalon总线构成。其中DMA控制器用于实现两个存储器之间,或者存储器和外设之间,或者是两个外设之间的直接数据传输。DMA模块用于连接支持流模式传输的外设,并允许定长或变长的数据传输,而不需要CPU的干涉。在Ultra DMA数据传输的过程中,可以一次性传输最多256个扇区的数据,所以在系统中使用DMA控制器可以方便地在硬盘与系统中各种支持流传输模式的设备之间建立直通连接,提高系统的数据传输效率。 >>
  • 来源:www.mcu123.com/news/Article/ARMsource/ARM/200610/2366.html
  •   从上图可以看出,真正需要执行写操作的有两处,Step4 和 Step6 ,Step4首先写入寄存器的偏移地址,而Step6则是写入到该寄存器的值。由此已经很清楚了,对于写I2C寄存器,我们需要做的就是给 i2c_master_send 函数传入两个字节的数据即可,第一个字节为寄存器的地址,第二个字节为要写入寄存器的数据。示例如下:    staticint tvp5158_i2c_write( struct i2c_client* client,uint8_t reg,uint8_t data) {
  •   从上图可以看出,真正需要执行写操作的有两处,Step4 和 Step6 ,Step4首先写入寄存器的偏移地址,而Step6则是写入到该寄存器的值。由此已经很清楚了,对于写I2C寄存器,我们需要做的就是给 i2c_master_send 函数传入两个字节的数据即可,第一个字节为寄存器的地址,第二个字节为要写入寄存器的数据。示例如下:    staticint tvp5158_i2c_write( struct i2c_client* client,uint8_t reg,uint8_t data) { >>
  • 来源:www.educity.cn/linux/1609771.html
  • 1、时序图 2、控制字 3、寄存器地址与RAM地址 4、代码 时序图  控制字  寄存器与RAM  代码: #include <reg52.h> #include <intrins.h> sbit dm = P2^2; //段码 sbit wm = P2^3; //位码 sbit st = P1^6; //使能(RST) sbit cl = P1^4; //时钟管脚(CLK) sbit da = P1^5; //i/o管脚(数据管脚)(i/o) /*这两个函数就这时钟芯片的精髓*/
  • 1、时序图 2、控制字 3、寄存器地址与RAM地址 4、代码 时序图 控制字 寄存器与RAM 代码: #include <reg52.h> #include <intrins.h> sbit dm = P2^2; //段码 sbit wm = P2^3; //位码 sbit st = P1^6; //使能(RST) sbit cl = P1^4; //时钟管脚(CLK) sbit da = P1^5; //i/o管脚(数据管脚)(i/o) /*这两个函数就这时钟芯片的精髓*/ >>
  • 来源:www.51hei.com/bbs/dpj-30428-1.html
  • 从上图可以看出,真正需要执行写操作的有两处,Step4 和 Step6 ,Step4首先写入寄存器的偏移地址,而Step6则是写入到该寄存器的值。由此已经很清楚了,对于写I2C寄存器,我们需要做的就是给 i2c_master_send 函数传入两个字节的数据即可,第一个字节为寄存器的地址,第二个字节为要写入寄存器的数据。示例如下:
  • 从上图可以看出,真正需要执行写操作的有两处,Step4 和 Step6 ,Step4首先写入寄存器的偏移地址,而Step6则是写入到该寄存器的值。由此已经很清楚了,对于写I2C寄存器,我们需要做的就是给 i2c_master_send 函数传入两个字节的数据即可,第一个字节为寄存器的地址,第二个字节为要写入寄存器的数据。示例如下: >>
  • 来源:www.68idc.cn/help/makewebs/asks/20140604102813.html
  • 所以,发送和接收寄存器可使用同一地址,编写验证程序(发送和接收是独立空间):读取一个数(1)->发送一个数(2)->再读取得1则是独立空间 不知道STM32串口寄存器和C51串口寄存器是否同样道理 STM32串口寄存器:STM32的发送与接收是通过数据寄存器USART_DR来实现的,这是一个双寄存器,包含了TDR和RDR,对它读操作,读取的是RDR寄存器的值,对它的写操作,实际上是写到TDR寄存器的;当向该寄存器写数据的时候,串口就会自动发送,当收到收据的时候,也是存在该寄存器内。
  • 所以,发送和接收寄存器可使用同一地址,编写验证程序(发送和接收是独立空间):读取一个数(1)->发送一个数(2)->再读取得1则是独立空间 不知道STM32串口寄存器和C51串口寄存器是否同样道理 STM32串口寄存器:STM32的发送与接收是通过数据寄存器USART_DR来实现的,这是一个双寄存器,包含了TDR和RDR,对它读操作,读取的是RDR寄存器的值,对它的写操作,实际上是写到TDR寄存器的;当向该寄存器写数据的时候,串口就会自动发送,当收到收据的时候,也是存在该寄存器内。 >>
  • 来源:www.cnblogs.com/cj2014/p/3969951.html