•   TDA2030A的优良性能使得它十几年来一直得到大家的疯狂喜爱,很多外表豪华的有源音箱、中档功放、低音炮也采用了TDA2030。    TDA2030A是单声道的功率放大集成电路,做立体声放大器必须使用两只TDA2030A.TDA2030A只有五只引脚,正电源、负电源、正向输入、反向输入和输出。TDA2030A的散热片是和负极连通的,用双电源供电时,散热片千万不要和地线短路。   本功放板采用双12V电源,TDA2030A工作在OCL方式。OCL是指不用音频输入、输出变压器和输出耦合电容,放大器直接推
  •   TDA2030A的优良性能使得它十几年来一直得到大家的疯狂喜爱,很多外表豪华的有源音箱、中档功放、低音炮也采用了TDA2030。   TDA2030A是单声道的功率放大集成电路,做立体声放大器必须使用两只TDA2030A.TDA2030A只有五只引脚,正电源、负电源、正向输入、反向输入和输出。TDA2030A的散热片是和负极连通的,用双电源供电时,散热片千万不要和地线短路。   本功放板采用双12V电源,TDA2030A工作在OCL方式。OCL是指不用音频输入、输出变压器和输出耦合电容,放大器直接推 >>
  • 来源:www.dzsc.com/data/Circuit-50507.html
  • 仪表放大器印刷电路板布局原则讲解 图1所示为典型单电源高侧电流感应电路的原理图。  图1:高侧电流感应原理图 图1测量的是通过RSHUNT的差分电压,R1、R2、C1、C2和C3用于提供共模和差模滤波,R3和C4提供U1 INA的输出滤波,U2用于缓冲INA的参考引脚。R4和C5用于形成低通滤波器,将运放给INA参考引脚带来的噪音降至最低。 虽然图1中的原理图布局看起来很直观,但却非常容易在PCB布局中出错,造成电路性能下降。图2显示了TI工作人员在检查INA布局时常见的三种错误。  图2:INA常见PC
  • 仪表放大器印刷电路板布局原则讲解 图1所示为典型单电源高侧电流感应电路的原理图。 图1:高侧电流感应原理图 图1测量的是通过RSHUNT的差分电压,R1、R2、C1、C2和C3用于提供共模和差模滤波,R3和C4提供U1 INA的输出滤波,U2用于缓冲INA的参考引脚。R4和C5用于形成低通滤波器,将运放给INA参考引脚带来的噪音降至最低。 虽然图1中的原理图布局看起来很直观,但却非常容易在PCB布局中出错,造成电路性能下降。图2显示了TI工作人员在检查INA布局时常见的三种错误。 图2:INA常见PC >>
  • 来源:bbs.cepark.com/article/id/63904
  • 本 电 路 采 用 STC 公 司 生 产 的 单 片 机STC15F2K56S2,是一款高速、高可靠、低功耗、超强抗干扰的新一代 8051 单片机。它采用第八代加密技术超级加密,指令代码完全兼容传统 8051 单片机,而速度较之传统的单片机要快 8 倍 ~12 倍。其工作电压为直流 5. 5 V ~3. 8 V(本设计选用 5 V),具有丰富的内部硬件资源,几乎覆盖了数据采集和控制中所需的所有单元模块,包含捕获/比较单元CCP/PWM/PCA、高 速 10 位 A/D 转 换、大 容 量SRAM/EEP
  • 本 电 路 采 用 STC 公 司 生 产 的 单 片 机STC15F2K56S2,是一款高速、高可靠、低功耗、超强抗干扰的新一代 8051 单片机。它采用第八代加密技术超级加密,指令代码完全兼容传统 8051 单片机,而速度较之传统的单片机要快 8 倍 ~12 倍。其工作电压为直流 5. 5 V ~3. 8 V(本设计选用 5 V),具有丰富的内部硬件资源,几乎覆盖了数据采集和控制中所需的所有单元模块,包含捕获/比较单元CCP/PWM/PCA、高 速 10 位 A/D 转 换、大 容 量SRAM/EEP >>
  • 来源:www.tx7878.cn/jingyan/2646.html
  • 一、概述 生物电信号十分微弱,在检测生物电信号的同时存在强大的干扰,因此,设计高质量的生物电放大器有许多技术困难。 本文介绍了使用ADI公司生产的集成化仪用放大器和运算放大器,设计了几种新的结构形式的高性能生物电前置放大器。  图1 生物电前置放大器设计应用一  图2 生物电前置放大器设计应用二  图3 生物电前置放大器设计应用三 二、几种新型高性能生物电放大器 1 设计应用一 该放大电路由四部分构成:仪用放大器A5构成的前级放大器,运放A4构成后级差分放大器,直流补偿放大器A3以及A1、A2构成右腿驱动
  • 一、概述 生物电信号十分微弱,在检测生物电信号的同时存在强大的干扰,因此,设计高质量的生物电放大器有许多技术困难。 本文介绍了使用ADI公司生产的集成化仪用放大器和运算放大器,设计了几种新的结构形式的高性能生物电前置放大器。 图1 生物电前置放大器设计应用一 图2 生物电前置放大器设计应用二 图3 生物电前置放大器设计应用三 二、几种新型高性能生物电放大器 1 设计应用一 该放大电路由四部分构成:仪用放大器A5构成的前级放大器,运放A4构成后级差分放大器,直流补偿放大器A3以及A1、A2构成右腿驱动 >>
  • 来源:www.eechina.com/thread-49110-1-1.html
  •   2.2 主控芯片的工作方式   本设计采用的主控芯片是Cypress公司的USB2.0控制芯片CY7C68013,它与计算机通过USB接口相连,使设备能在PC机的控制下进行操作。USB主控芯片通过逻辑控制电路连接到FIFO和A/D转换后的数据传送至FIFO芯片进行缓冲,缓冲后的数据输入主控芯片的从FIFO中,然后从FIFO以DMA(直接内存存取)的方式经由SIE(串行接口引擎)传给PC机。   为了实现高速数据采集的功能,A/D芯片采用的ADl*,它是一款12位,最高转换速度可达100kHz的A/D
  •   2.2 主控芯片的工作方式   本设计采用的主控芯片是Cypress公司的USB2.0控制芯片CY7C68013,它与计算机通过USB接口相连,使设备能在PC机的控制下进行操作。USB主控芯片通过逻辑控制电路连接到FIFO和A/D转换后的数据传送至FIFO芯片进行缓冲,缓冲后的数据输入主控芯片的从FIFO中,然后从FIFO以DMA(直接内存存取)的方式经由SIE(串行接口引擎)传给PC机。   为了实现高速数据采集的功能,A/D芯片采用的ADl*,它是一款12位,最高转换速度可达100kHz的A/D >>
  • 来源:application.weeqoo.com/2010/9/20109711270268330.html
  • 在一般运算放大器的共模输入电压范围由于深度负反馈,Vin+和Vin-可以认为等于共模收入电压Vicm,只要Vin+和Vin-  不超过共模电压的范围即可工作,对于仪表放大器由于属于差模放大,Vin+不等于Vin-的,共模输入范围是不是可以这样理解:假如一个放大器的工作电压为0~3.
  • 在一般运算放大器的共模输入电压范围由于深度负反馈,Vin+和Vin-可以认为等于共模收入电压Vicm,只要Vin+和Vin-  不超过共模电压的范围即可工作,对于仪表放大器由于属于差模放大,Vin+不等于Vin-的,共模输入范围是不是可以这样理解:假如一个放大器的工作电压为0~3. >>
  • 来源:www.deyisupport.com/question_answer/analog/amplifiers/f/52/t/85099.aspx
  • 如下图所示,有几点不太明白:</p> <p>1.共模驱动(右腿驱动)的共模信号来自于两个2M&Omega;电阻分压取得共模信号,但是这个共模信号又连到了一个VR=2.5V上(电路图左下角),这样不会对共模取样有影响吗?电路途中所有显示+Vr的地方我都连接到这两个2K&Omega;电阻的分压处,也就是电路图左下角那边,可以吗?</p> <p>2.
  • 如下图所示,有几点不太明白:</p> <p>1.共模驱动(右腿驱动)的共模信号来自于两个2M&Omega;电阻分压取得共模信号,但是这个共模信号又连到了一个VR=2.5V上(电路图左下角),这样不会对共模取样有影响吗?电路途中所有显示+Vr的地方我都连接到这两个2K&Omega;电阻的分压处,也就是电路图左下角那边,可以吗?</p> <p>2. >>
  • 来源:www.deyisupport.com/question_answer/analog/amplifiers/f/52/t/65711.aspx
  • 电路如图,前端S+,S-为压力传感器,惠斯通电桥结构,1.5MA激励,差分信号为130MV左右,此信号先通过仪表放大器,仪表放大器REF有119MV,仪表放大器输出接运算放大器跟随,接MCU的ADC口,现仪表上电,零点会发生漂移,约10分钟后才能稳定,如图4趋势所示,感觉像是电容充电所致,如何解决此问题?
  • 电路如图,前端S+,S-为压力传感器,惠斯通电桥结构,1.5MA激励,差分信号为130MV左右,此信号先通过仪表放大器,仪表放大器REF有119MV,仪表放大器输出接运算放大器跟随,接MCU的ADC口,现仪表上电,零点会发生漂移,约10分钟后才能稳定,如图4趋势所示,感觉像是电容充电所致,如何解决此问题? >>
  • 来源:www.deyisupport.com/question_answer/analog/amplifiers/f/52/p/69096/163893.aspx
  •   美国国家半导体公司 (National Semiconductor Corporation)宣布推出业界首款可编程且配备诊断功能的零点漂移仪表放大器。这款型号为LMP8358的芯片简化了压力及热电偶桥接电路的测量方式,使用户可以检测远程工业系统的线路是否有短路、开路以及老化等现象,而且用户更可利用其中的诊断功能防止医疗设备、高精度重量计、压力传感器和马达控制系统的线路出现故障。   LMP8358芯片利用多种已注册专利的技术测量以及连续不断校正其输入偏置电压(典型值为5uV),以免因长时间操作及温度变
  •   美国国家半导体公司 (National Semiconductor Corporation)宣布推出业界首款可编程且配备诊断功能的零点漂移仪表放大器。这款型号为LMP8358的芯片简化了压力及热电偶桥接电路的测量方式,使用户可以检测远程工业系统的线路是否有短路、开路以及老化等现象,而且用户更可利用其中的诊断功能防止医疗设备、高精度重量计、压力传感器和马达控制系统的线路出现故障。   LMP8358芯片利用多种已注册专利的技术测量以及连续不断校正其输入偏置电压(典型值为5uV),以免因长时间操作及温度变 >>
  • 来源:www.ybzhan.cn/news/detail/14697.html
  • 16W音频放大器电源应用电路 如图为16W音频放大器电源应用电路。在85V AC输人,输出峰值功率35W时,效率为77%(最小)。电路具有低空载功耗(230V AC时小于0.7W)、元件数量少(共37个元件,不包括I/0连接器)等特点,变压器设计为能输出35W峰值功率,使用或不使用输出缓冲电容均能实现稳定的工作状态,满足CISPR-22B对EMI限制的要求,并具有大于10dBuV的裕量。
  • 16W音频放大器电源应用电路 如图为16W音频放大器电源应用电路。在85V AC输人,输出峰值功率35W时,效率为77%(最小)。电路具有低空载功耗(230V AC时小于0.7W)、元件数量少(共37个元件,不包括I/0连接器)等特点,变压器设计为能输出35W峰值功率,使用或不使用输出缓冲电容均能实现稳定的工作状态,满足CISPR-22B对EMI限制的要求,并具有大于10dBuV的裕量。 >>
  • 来源:m.wuyazi.com/view.php?aid=15627
  • 该音频功率放大器可在4到16欧姆扬声器提供高达200W的一流音质。工作电压为24和36V之间,最大5A电流,频率响应是从20到20000赫兹。请把晶体管和集成电路固定牢固,单独安装足够面积的散热器。 散热器注意保持绝缘,不能有任何电气连接!晶体管必须和散热器良好接触并固定牢固!晶体管是这个大功率放大器的重要元件,产生热量比较多。  200W功率放大器的电路原理图 电源应足够强大以满足放大器的功率消耗,最大电流可以高达5A。 该放大器输入灵敏度约500至800mV。因此,连接输出电平较低的声源,有必要预先连
  • 该音频功率放大器可在4到16欧姆扬声器提供高达200W的一流音质。工作电压为24和36V之间,最大5A电流,频率响应是从20到20000赫兹。请把晶体管和集成电路固定牢固,单独安装足够面积的散热器。 散热器注意保持绝缘,不能有任何电气连接!晶体管必须和散热器良好接触并固定牢固!晶体管是这个大功率放大器的重要元件,产生热量比较多。 200W功率放大器的电路原理图 电源应足够强大以满足放大器的功率消耗,最大电流可以高达5A。 该放大器输入灵敏度约500至800mV。因此,连接输出电平较低的声源,有必要预先连 >>
  • 来源:www.360doc.com/content/14/0805/01/12109864_399481357.shtml
  • 第一章 集成运算放大器应用电路设计 第一节 基本差动放大器设计 第二节 高输入阻抗运算放大器设计 第三节 基本同相并联差动运算放大器设计方法 第四节 仪用放大器 第五节 增益线性调节的差动运算放大器设计 第六节 Rail-to-Rail运算放大器MAX492/MAX494/MAX495的设计与应用电路 第七节 微功耗MAX4162~MAX4164 Rail-to-Rail运放 第八节 超低功率单电源运算放大器、比较器、参考电压三合一/运算放大器、比较器二合一集成电路应用 第九节 超低失真超低噪声运放AD7
  • 第一章 集成运算放大器应用电路设计 第一节 基本差动放大器设计 第二节 高输入阻抗运算放大器设计 第三节 基本同相并联差动运算放大器设计方法 第四节 仪用放大器 第五节 增益线性调节的差动运算放大器设计 第六节 Rail-to-Rail运算放大器MAX492/MAX494/MAX495的设计与应用电路 第七节 微功耗MAX4162~MAX4164 Rail-to-Rail运放 第八节 超低功率单电源运算放大器、比较器、参考电压三合一/运算放大器、比较器二合一集成电路应用 第九节 超低失真超低噪声运放AD7 >>
  • 来源:book.beifabook.com/Product/BookDetail.aspx?Plucode=712120291
  • 2 系统硬件电路设计 2.1 信号处理模块 信号处理模块负责对待测信号进行处理以便于ADC采样。该模块由前级固定增益放大电路、中间级程控放大电路和末级工频滤波电路构成。 前级固定增益电路采用宽带低噪运算放大器OPA657。该芯片的带宽增益积达1.6 GHz,在90 MHz以下具有0.1 dB的增益平坦度,输入电压噪声4.
  • 2 系统硬件电路设计 2.1 信号处理模块 信号处理模块负责对待测信号进行处理以便于ADC采样。该模块由前级固定增益放大电路、中间级程控放大电路和末级工频滤波电路构成。 前级固定增益电路采用宽带低噪运算放大器OPA657。该芯片的带宽增益积达1.6 GHz,在90 MHz以下具有0.1 dB的增益平坦度,输入电压噪声4. >>
  • 来源:www.chinaaet.com/tech/designapplication/3000092362
  •   其中MOSI、MISO、SCK 为SPI 串行通信和时钟线,分别与MCU 对应的口线相连;OUT-CS1 为对应芯片的片选线,低电平有效,接MCU 的一个口线。MCU 通过其置0来选择该芯片 通信。RES-OUT 为对应芯片的复位信号线,低电平有效,用MCU 的一个口线。MCU 通过其置 0来复位该芯片,多个输出接口芯片共用一个复位信号。6 路输出(OUT1-OUT6)可以直接 驱动6 个继电器实现接点控制。   2.3 MC33291 多路输出控制电路程序设计   开关量输出控制软件流程见图5。图
  •   其中MOSI、MISO、SCK 为SPI 串行通信和时钟线,分别与MCU 对应的口线相连;OUT-CS1 为对应芯片的片选线,低电平有效,接MCU 的一个口线。MCU 通过其置0来选择该芯片 通信。RES-OUT 为对应芯片的复位信号线,低电平有效,用MCU 的一个口线。MCU 通过其置 0来复位该芯片,多个输出接口芯片共用一个复位信号。6 路输出(OUT1-OUT6)可以直接 驱动6 个继电器实现接点控制。   2.3 MC33291 多路输出控制电路程序设计   开关量输出控制软件流程见图5。图 >>
  • 来源:application.weeqoo.com/2009/12/200912114525289571.html
  •   在要求低噪声的应用中用二级滤波,如图9.R5在滤波电感前,另一路通过积分器,在滤波电感后.如果二级滤波谐振是衰减的并且谐振频率超过补偿网络的第一个零点(TL431的单位增益频率),则电路稳定.这是一个非常有用有趣的电路.二级滤波额外的相位延迟和极点通过积分器直接在回路中显示出来,但当TL431增益的小于单位增益时(超过全部补偿的零点时)这不改变回路的响应.
  •   在要求低噪声的应用中用二级滤波,如图9.R5在滤波电感前,另一路通过积分器,在滤波电感后.如果二级滤波谐振是衰减的并且谐振频率超过补偿网络的第一个零点(TL431的单位增益频率),则电路稳定.这是一个非常有用有趣的电路.二级滤波额外的相位延迟和极点通过积分器直接在回路中显示出来,但当TL431增益的小于单位增益时(超过全部补偿的零点时)这不改变回路的响应. >>
  • 来源:www.sddgks.com/ruodian/dianjishu/43838.html
  •   如图所示为由ISO120与仪表放大器INA105、多路选择器构成的600V电池系统的电池监控电路。该电路对50个12V串联电池(即总电压600V)的充放电进行检测,以防止过充电或过放电。ISO120的输入电压为单个12V电池两端端电压经两个10kΩ电阻分压得到e/2电压,经过隔离放大后送到INA105。INA105接成增益为1的反相放大器,输出e/2到多路选择器,由多路选择器控制选择输出。   
  •   如图所示为由ISO120与仪表放大器INA105、多路选择器构成的600V电池系统的电池监控电路。该电路对50个12V串联电池(即总电压600V)的充放电进行检测,以防止过充电或过放电。ISO120的输入电压为单个12V电池两端端电压经两个10kΩ电阻分压得到e/2电压,经过隔离放大后送到INA105。INA105接成增益为1的反相放大器,输出e/2到多路选择器,由多路选择器控制选择输出。    >>
  • 来源:www.educity.cn/wulianwang/1280510.html
  • 没有文字,我这里补充一下 ============================= 我所遇到的问题是:在没有施加,或者施加较小压力的情形下,放大器输出大约80mV,直到施加压力大约2kg左右开始输出电压大于80mV,这样导致我不能够测量小于2kg以下的压力,我所使用的压力传感器最大量程30kg。我的应用要求能够测量到0.
  • 没有文字,我这里补充一下 ============================= 我所遇到的问题是:在没有施加,或者施加较小压力的情形下,放大器输出大约80mV,直到施加压力大约2kg左右开始输出电压大于80mV,这样导致我不能够测量小于2kg以下的压力,我所使用的压力传感器最大量程30kg。我的应用要求能够测量到0. >>
  • 来源:www.deyisupport.com/question_answer/analog/amplifiers/f/52/t/4125.aspx