• MSR指令介绍 MRS的指令编码格式: 这里分为两种格式,一种是原操作数为通用寄存器, 另一种是源操作数是立即数。   指令的语法格式: MSR{<cond>} CPSR_<fields>, #<immediate> MSR{<cond>} CPSR_<fields>, <Rm> MSR{<cond>} CPSR_<fields>, #<immediate> MSR{<cond>} CP
  • MSR指令介绍 MRS的指令编码格式: 这里分为两种格式,一种是原操作数为通用寄存器, 另一种是源操作数是立即数。 指令的语法格式: MSR{<cond>} CPSR_<fields>, #<immediate> MSR{<cond>} CPSR_<fields>, <Rm> MSR{<cond>} CPSR_<fields>, #<immediate> MSR{<cond>} CP >>
  • 来源:www.myexception.cn/program/1240132.html
  • O 引言 信息社会的发展,在很大程度上取决于信息和信号处理技术的先进性。数字处理技术的出现改变了信息与信号处理技术的整个面貌,而Tl公司的DM642是推动数字信号处理技术发展的一个标志性产品。目前,“信息高速公路”成了发达国家的热门课题,其中数字图像处理技术则成为它的极其重要的部分。而且,数字图像处理技术还与当前乃至21世纪的一些关键电子技术及电子产品密切相关,例如高清晰度电视、可视电话、多媒体技术、医用图像处理等领域得到广泛的应用。 1 数字图像处理系统概述 1.1 系统结构 图
  • O 引言 信息社会的发展,在很大程度上取决于信息和信号处理技术的先进性。数字处理技术的出现改变了信息与信号处理技术的整个面貌,而Tl公司的DM642是推动数字信号处理技术发展的一个标志性产品。目前,“信息高速公路”成了发达国家的热门课题,其中数字图像处理技术则成为它的极其重要的部分。而且,数字图像处理技术还与当前乃至21世纪的一些关键电子技术及电子产品密切相关,例如高清晰度电视、可视电话、多媒体技术、医用图像处理等领域得到广泛的应用。 1 数字图像处理系统概述 1.1 系统结构 图 >>
  • 来源:hnrain.cepark.com/article/id/5841
  • 一种基于移位寄存器的CAM的Verilog HDL实现 摘要:一种利用Verilog HDL设计CAM的方案,该方案以移位寄存器为核心,所实现的CAN具有可重新配置改变字长、易于扩展、匹配查找速度等特点,并在网络协处理器仿真中得到了应用。 关键词:CAM 移位寄存器 Verilog HDL CAM (Content Addressable Memory,内容可寻址存储器)是一种特殊的存储阵列。它通过将输入数据与CAM中存储的所有数据项同时进行比较,迅速判断出输入数据是否与CAM中的 存储数据项相匹配,并给
  • 一种基于移位寄存器的CAM的Verilog HDL实现 摘要:一种利用Verilog HDL设计CAM的方案,该方案以移位寄存器为核心,所实现的CAN具有可重新配置改变字长、易于扩展、匹配查找速度等特点,并在网络协处理器仿真中得到了应用。 关键词:CAM 移位寄存器 Verilog HDL CAM (Content Addressable Memory,内容可寻址存储器)是一种特殊的存储阵列。它通过将输入数据与CAM中存储的所有数据项同时进行比较,迅速判断出输入数据是否与CAM中的 存储数据项相匹配,并给 >>
  • 来源:1-fun.com/a/ruanjiankaifa/2016/0814/1195.html
  • 。红外接口控制逻辑根据控制命令发出控制信号,使整个红外控制器处于准备状态。当上层协议发出数据发送事件时,红外接口控制逻辑发出消息,通知主机启动S5933总线主控读操作,把上层数据写到外部红外TXFIFO数据缓冲器;同时红外接口控制逻辑根据TXFIFO状态把TXFIFO的数据发送到红外收发器接口,进行锁存、并/串转换、CRC校验和编码,最后通过VFIR收发器发送数据。同理VFIR收发器接收到的数据经过译码、CRC校验、串/并转换和锁存,写入RXFIFO数据缓冲器。红外接口控制逻辑触发上层协议发出数据接收事件
  • 。红外接口控制逻辑根据控制命令发出控制信号,使整个红外控制器处于准备状态。当上层协议发出数据发送事件时,红外接口控制逻辑发出消息,通知主机启动S5933总线主控读操作,把上层数据写到外部红外TXFIFO数据缓冲器;同时红外接口控制逻辑根据TXFIFO状态把TXFIFO的数据发送到红外收发器接口,进行锁存、并/串转换、CRC校验和编码,最后通过VFIR收发器发送数据。同理VFIR收发器接收到的数据经过译码、CRC校验、串/并转换和锁存,写入RXFIFO数据缓冲器。红外接口控制逻辑触发上层协议发出数据接收事件 >>
  • 来源:www.chinaaet.com/article/7746
  •      4、几点说明      CRC-8校验。整个数据的传输过程都由8位校验保证,确保任何错误的数据都能够被检测到并删除[1]。      为保持自身发热温升小于0.1,SHTxx的激活时间不超过10%。如12位精度测量,每秒zui多测量2次。      转换为物理量输出相对湿度输出转换公式为:
  •      4、几点说明      CRC-8校验。整个数据的传输过程都由8位校验保证,确保任何错误的数据都能够被检测到并删除[1]。      为保持自身发热温升小于0.1,SHTxx的激活时间不超过10%。如12位精度测量,每秒zui多测量2次。      转换为物理量输出相对湿度输出转换公式为: >>
  • 来源:www.ybzhan.cn/tech_news/Detail/64609.html
  • cpsr分为四个域,每个域有8位的宽度:flags,status,extension和control.control域包含处理器模式和状态以及中断屏蔽位.flags域包含condition flags.处理器模式决定了当前哪些寄存器是可用的以及cpsr本身的访问权限. 当发生异常时,arm会自动将cpsr保存到spsr寄存器中。 二、 处理器模式 处理器模式分为特权模式和非特权模式:特权模式对cpsr有完全的读写控制.
  • cpsr分为四个域,每个域有8位的宽度:flags,status,extension和control.control域包含处理器模式和状态以及中断屏蔽位.flags域包含condition flags.处理器模式决定了当前哪些寄存器是可用的以及cpsr本身的访问权限. 当发生异常时,arm会自动将cpsr保存到spsr寄存器中。 二、 处理器模式 处理器模式分为特权模式和非特权模式:特权模式对cpsr有完全的读写控制. >>
  • 来源:www.lxway.com/4469062894.htm
  • 推荐回答:段寄存器 段寄存器是因为对内存的分段管理而设置的。16位CPU有四个段寄存器,所以,其程序可同时访问四个不同含义的段。 段寄存器CS指向存放程序的内存段,IP是用来存放下条待执行的指令在该段的偏移量,把它们合在一起可在该内存段内取到下次要执行的指令。 段寄存器SS指向用于堆栈的内存段,SP是用来指向该堆栈的栈顶,把它们合在一起可访问栈顶单元。另外,当偏移量用到了指针寄存器BP,则其缺省的段寄存器也是SS,并且用BP可访问整个堆栈,不仅仅是只访问栈顶。 段寄存器DS指向数据段,ES指向附加段,在存
  • 推荐回答:段寄存器 段寄存器是因为对内存的分段管理而设置的。16位CPU有四个段寄存器,所以,其程序可同时访问四个不同含义的段。 段寄存器CS指向存放程序的内存段,IP是用来存放下条待执行的指令在该段的偏移量,把它们合在一起可在该内存段内取到下次要执行的指令。 段寄存器SS指向用于堆栈的内存段,SP是用来指向该堆栈的栈顶,把它们合在一起可访问栈顶单元。另外,当偏移量用到了指针寄存器BP,则其缺省的段寄存器也是SS,并且用BP可访问整个堆栈,不仅仅是只访问栈顶。 段寄存器DS指向数据段,ES指向附加段,在存 >>
  • 来源:www.zhishizhan.net/xiaozhishi/158986.html
  • 了解一款芯片,最基本的就是要了解它的寄存器。大家不要因为80386是32位处理器,就认为它的寄存器都是32位的。其实它的寄存器相当的复杂。不仅有32位的,还有16位的,48位的,乃至64位的。80386共有34个寄存器,可分为七类。它们分别是通用寄存器、指令指针和标志寄存器、段寄存器、系统地址寄存器、控制寄存器、调试和测试寄存器。以下是部分常用的寄存器: 一、通用寄存器(8个) 80386有8个32位的通用寄存器,这8个通用寄存器都是由8088/8086/80286的相应16位通用寄存器扩展成32位而得。
  • 了解一款芯片,最基本的就是要了解它的寄存器。大家不要因为80386是32位处理器,就认为它的寄存器都是32位的。其实它的寄存器相当的复杂。不仅有32位的,还有16位的,48位的,乃至64位的。80386共有34个寄存器,可分为七类。它们分别是通用寄存器、指令指针和标志寄存器、段寄存器、系统地址寄存器、控制寄存器、调试和测试寄存器。以下是部分常用的寄存器: 一、通用寄存器(8个) 80386有8个32位的通用寄存器,这8个通用寄存器都是由8088/8086/80286的相应16位通用寄存器扩展成32位而得。 >>
  • 来源:www.61ic.com/Technology/embed/201304/48051.html
  • 摘 要:常规心电监护设备活动局限性强,难以携带,且无法进行远程监测。文中设计了一种远程心电监测分析系统,该系统使用AD8232模拟前端进行心电采集,并由STM32微处理器处理信息,通过Android设备进行数据中继,经由WiFi或3G/4G网络与PC机实现远程监测分析,因而能够实现心电波形绘制,心率计算,频谱心电图分析,信息保存等功能。具有功耗低,成本低,精度高,体积小,易携带等特点。测试结果表明该系统运行稳定,各项功能均可达到设计要求,并在移动健康、智慧医疗等领域具有一定的实用性和广泛的应用前景。 关
  • 摘 要:常规心电监护设备活动局限性强,难以携带,且无法进行远程监测。文中设计了一种远程心电监测分析系统,该系统使用AD8232模拟前端进行心电采集,并由STM32微处理器处理信息,通过Android设备进行数据中继,经由WiFi或3G/4G网络与PC机实现远程监测分析,因而能够实现心电波形绘制,心率计算,频谱心电图分析,信息保存等功能。具有功耗低,成本低,精度高,体积小,易携带等特点。测试结果表明该系统运行稳定,各项功能均可达到设计要求,并在移动健康、智慧医疗等领域具有一定的实用性和广泛的应用前景。 关 >>
  • 来源:www.fx361.com/page/2017/0908/2240926.shtml
  •   用单片机控制8位LED灯的流水点亮及其PROTEUS仿真   摘要:LED灯的流水控制可以由多种方式实现,这里选用80c51系列单片机作为CPU,采用函数型指针的方式编程,用Proteus进行电路图绘制和仿真,用keil进行编译和虚拟写入,得到了理想的仿真效果。   Abstract: LED lights from a variety of water control can be achieved, 80c51 chosen here as a series of single-chip CPU,
  •   用单片机控制8位LED灯的流水点亮及其PROTEUS仿真   摘要:LED灯的流水控制可以由多种方式实现,这里选用80c51系列单片机作为CPU,采用函数型指针的方式编程,用Proteus进行电路图绘制和仿真,用keil进行编译和虚拟写入,得到了理想的仿真效果。   Abstract: LED lights from a variety of water control can be achieved, 80c51 chosen here as a series of single-chip CPU, >>
  • 来源:bbs.ofweek.com/forum.php?mod=viewthread&tid=61661&mobile=1
  • DM8168的PWM是通过TIMx_OUT引脚输出的,需要对Timer进行配置才能有波形输出。 对Timer的时钟进行配置,确保Timer能正常工作。 设置寄存器之前关闭Timer。 设置定时溢出后的装载值。 设置比较值,该值决定PWM占空比。 设置internal counter值。 启动Timer。 启动DM8168过后,停在U-boot界面,使用U-boot的内存读写工具来进行调试。 一、修改CM_ALWON_TIMER_4_CLKC
  • DM8168的PWM是通过TIMx_OUT引脚输出的,需要对Timer进行配置才能有波形输出。 对Timer的时钟进行配置,确保Timer能正常工作。 设置寄存器之前关闭Timer。 设置定时溢出后的装载值。 设置比较值,该值决定PWM占空比。 设置internal counter值。 启动Timer。 启动DM8168过后,停在U-boot界面,使用U-boot的内存读写工具来进行调试。 一、修改CM_ALWON_TIMER_4_CLKC >>
  • 来源:www.lxway.com/115011806.htm
  • 产品功能:整合的通讯功能,内建1组RS-232,2组RS-485通讯端口,均支持MODBUS主/从站模式;新推出DVP32ES2-C:CANopen1Mbps通讯型主机,以及DVP30EX2:模拟/温度混合型主机;DVP-ES2提供16/20/24/32/40/60点I/O主机,满足各种应用;DVP20EX2内置12-bit4AI/2AO,同时可搭配14-bitAIO扩展模块,配合内建PIDAutoTuning功能,提供完整的模拟控制解决方案;DVP30EX2提供模拟/温控整合型控制器,内置16-bit3
  • 产品功能:整合的通讯功能,内建1组RS-232,2组RS-485通讯端口,均支持MODBUS主/从站模式;新推出DVP32ES2-C:CANopen1Mbps通讯型主机,以及DVP30EX2:模拟/温度混合型主机;DVP-ES2提供16/20/24/32/40/60点I/O主机,满足各种应用;DVP20EX2内置12-bit4AI/2AO,同时可搭配14-bitAIO扩展模块,配合内建PIDAutoTuning功能,提供完整的模拟控制解决方案;DVP30EX2提供模拟/温控整合型控制器,内置16-bit3 >>
  • 来源:www.cfs1688.com/Products/tdplcbzxmnhhxzjdvpes.html
  • 步进电机内部结构如图1所示:  如何能使它转起来呢?一搬有两种方法: 1.单相驱动:一相一相驱动,线圈加高电平顺序是:黄蓝红橙;或是:橙红蓝黄。其中黑白接地。 2.双相驱动:当要求电动机输出大功率时可以两相两相同时驱动,线圈加高电平顺序为:黄+红蓝+橙;或是:橙+蓝红+黄。 了解步进电机的驱动方式后、我想到了用移位寄存器产生移位脉冲来让步进电机动起来。电路如图2。  图2是通过拨码开关控制74LS194使Q0、Q1、Q2、Q3产生上面提过的两种移位脉冲来控制U1(光电耦合器
  • 步进电机内部结构如图1所示: 如何能使它转起来呢?一搬有两种方法: 1.单相驱动:一相一相驱动,线圈加高电平顺序是:黄蓝红橙;或是:橙红蓝黄。其中黑白接地。 2.双相驱动:当要求电动机输出大功率时可以两相两相同时驱动,线圈加高电平顺序为:黄+红蓝+橙;或是:橙+蓝红+黄。 了解步进电机的驱动方式后、我想到了用移位寄存器产生移位脉冲来让步进电机动起来。电路如图2。 图2是通过拨码开关控制74LS194使Q0、Q1、Q2、Q3产生上面提过的两种移位脉冲来控制U1(光电耦合器 >>
  • 来源:www.zxskj.cn/dianzi/zidongkongzhidianlu/1316.html
  • <br>最近在使用DP83849实现百兆以太网通讯。上电后1s后进行100ms硬件复位,但是在通讯过程中,发现同一版程序,有时能正常通讯,而有时只在FPGA程序中加了个在线观测,就不能正常通讯了。在正常通讯时,A口和B口的灯都正常亮。不能通讯时,A口 SPEED灯亮,LINK和ACT灯灭,B口相反,SPPED灭,LINK和ACT灯亮。</p> <p>读取了BMCR值,A口X&ldquo;3100&rdquo;,B口X&ldquo;2100&rdquo
  • <br>最近在使用DP83849实现百兆以太网通讯。上电后1s后进行100ms硬件复位,但是在通讯过程中,发现同一版程序,有时能正常通讯,而有时只在FPGA程序中加了个在线观测,就不能正常通讯了。在正常通讯时,A口和B口的灯都正常亮。不能通讯时,A口 SPEED灯亮,LINK和ACT灯灭,B口相反,SPPED灭,LINK和ACT灯亮。</p> <p>读取了BMCR值,A口X&ldquo;3100&rdquo;,B口X&ldquo;2100&rdquo >>
  • 来源:www.deyisupport.com/question_answer/analog/interface_and_clocks/f/59/t/104338.aspx
  • 了解一款芯片,最基本的就是要了解它的寄存器。大家不要因为80386是32位处理器,就认为它的寄存器都是32位的。其实它的寄存器相当的复杂。不仅有32位的,还有16位的,48位的,乃至64位的。80386共有34个寄存器,可分为七类。它们分别是通用寄存器、指令指针和标志寄存器、段寄存器、系统地址寄存器、控制寄存器、调试和测试寄存器。以下是部分常用的寄存器: 一、通用寄存器(8个) 80386有8个32位的通用寄存器,这8个通用寄存器都是由8088/8086/80286的相应16位通用寄存器扩展成32位而得。
  • 了解一款芯片,最基本的就是要了解它的寄存器。大家不要因为80386是32位处理器,就认为它的寄存器都是32位的。其实它的寄存器相当的复杂。不仅有32位的,还有16位的,48位的,乃至64位的。80386共有34个寄存器,可分为七类。它们分别是通用寄存器、指令指针和标志寄存器、段寄存器、系统地址寄存器、控制寄存器、调试和测试寄存器。以下是部分常用的寄存器: 一、通用寄存器(8个) 80386有8个32位的通用寄存器,这8个通用寄存器都是由8088/8086/80286的相应16位通用寄存器扩展成32位而得。 >>
  • 来源:www.lxway.com/4011240006.htm
  • 我们选择的是(TRG=10 & PT=1)倒数第二个选项,只要设置了一个装载值和比较值就可以确定占空比和周期。 设置装载值: TI8168_EVM#mw.l 0x48044040 0xffffffe0 vcD4KPHA+y8Shosno1sOxyL3PJiMyMDU0MDujujwvcD4KPHA+VEk4MTY4X0VWTSNtdy5sIDB4NDgwNDQwNGMgMHhmZmZmZmZmMCA8YnI+CjwvcD4KPHA+PGltZyBzcmM
  • 我们选择的是(TRG=10 & PT=1)倒数第二个选项,只要设置了一个装载值和比较值就可以确定占空比和周期。 设置装载值: TI8168_EVM#mw.l 0x48044040 0xffffffe0 vcD4KPHA+y8Shosno1sOxyL3PJiMyMDU0MDujujwvcD4KPHA+VEk4MTY4X0VWTSNtdy5sIDB4NDgwNDQwNGMgMHhmZmZmZmZmMCA8YnI+CjwvcD4KPHA+PGltZyBzcmM >>
  • 来源:www.41443.com/HTML/Java/20150320/358056.html
  • 由若干个正沿D触发器构成的一次能存储多位二进制代码的时序逻辑电路,叫寄存器。寄存器用于存储一组二进制数。 缓冲寄存器(buffer)  4位缓冲寄存器 工作原理:设有二进制(4位)数X3X2X1X0要存到缓冲器中。此Buffer 由D Register组成,将X送到Q端,CLK正沿未到Q3Q1不受X3X0影响,保持原状。 CLK到Q_传送给X,由Y输出, 这样将数据装到寄存器中。 弊端:X要送到Q端,只受CLK控制,即只要将X加到D端。CLK一到立即送到Q去,数据被冲掉,不可控。为此增设一个可控的门:L门
  • 由若干个正沿D触发器构成的一次能存储多位二进制代码的时序逻辑电路,叫寄存器。寄存器用于存储一组二进制数。 缓冲寄存器(buffer) 4位缓冲寄存器 工作原理:设有二进制(4位)数X3X2X1X0要存到缓冲器中。此Buffer 由D Register组成,将X送到Q端,CLK正沿未到Q3Q1不受X3X0影响,保持原状。 CLK到Q_传送给X,由Y输出, 这样将数据装到寄存器中。 弊端:X要送到Q端,只受CLK控制,即只要将X加到D端。CLK一到立即送到Q去,数据被冲掉,不可控。为此增设一个可控的门:L门 >>
  • 来源:www.science.globalsino.com/1/1science9355.html