•   在图1中,5脚是零电流检测输入端,接在变压器二次侧,因而检测到的是电感电流,即外电源流入负载的电流。当电感电流为零时,ZCD的输出翻转,将内部的RS触发器置1,7脚输出高电平,使Q1导通。外电源通过桥式整流,使变压器一次侧和Q1导通,电流流过变压器一次侧,将电能储存于电感中。当电感电流增大到一定值时,Q1又关断,这也是通过RS触发器进行控制的。1脚接PFC输出电压的分压,该电压经EMP放大后,与由3脚输入的电压分压值在MULT中相乘,MULT的输出与由4脚输入的Q1的电流比较。   当输入Q1的电
  •   在图1中,5脚是零电流检测输入端,接在变压器二次侧,因而检测到的是电感电流,即外电源流入负载的电流。当电感电流为零时,ZCD的输出翻转,将内部的RS触发器置1,7脚输出高电平,使Q1导通。外电源通过桥式整流,使变压器一次侧和Q1导通,电流流过变压器一次侧,将电能储存于电感中。当电感电流增大到一定值时,Q1又关断,这也是通过RS触发器进行控制的。1脚接PFC输出电压的分压,该电压经EMP放大后,与由3脚输入的电压分压值在MULT中相乘,MULT的输出与由4脚输入的Q1的电流比较。   当输入Q1的电 >>
  • 来源:www.dzsc.com/data/html/2010-8-19/84901.html
  •   (24A/500V/0.2)   输出整流二极管:   整流二极管要承受的最大反相电压为100V,电流为10A,考虑实际工作情况,我们选用MUR3060(600V/30A)   全桥电路图:    整流滤波输出电路:    驱动电路:    PWM信号通过光耦隔离,经过反相器进入半桥驱动芯片IR2110 ,如图所示的Q1、Q2半桥驱动电路,Q3、Q4驱动电路与此电路相同。   辅助电源供电:   本设计系统供电采用另制辅助电源,系统框图如下:    本供电系统可提供稳定的12V,5V,-12V电压,且
  •   (24A/500V/0.2)   输出整流二极管:   整流二极管要承受的最大反相电压为100V,电流为10A,考虑实际工作情况,我们选用MUR3060(600V/30A)   全桥电路图:   整流滤波输出电路:   驱动电路:   PWM信号通过光耦隔离,经过反相器进入半桥驱动芯片IR2110 ,如图所示的Q1、Q2半桥驱动电路,Q3、Q4驱动电路与此电路相同。   辅助电源供电:   本设计系统供电采用另制辅助电源,系统框图如下:   本供电系统可提供稳定的12V,5V,-12V电压,且 >>
  • 来源:www.dzsc.com/data/html/2011-10-24/98945.html
  • 功率因数校正电路,在上世纪五十年代,已经针对具有感性负载的交流用电器具的电压和电流不同相(图1)从而引起的供电效率低下提出了改进方法(由于感性负载的电流滞后所加电压,由于电压和电流的相位不同使供电线路的负担加重导致供电线路效率下降,这就要求在感性用电器具上并联一个电容器用以调整其该用电器具的电压、电流相位特性,例如:当时要求所使用的40W日光灯必须并联一个4.
  • 功率因数校正电路,在上世纪五十年代,已经针对具有感性负载的交流用电器具的电压和电流不同相(图1)从而引起的供电效率低下提出了改进方法(由于感性负载的电流滞后所加电压,由于电压和电流的相位不同使供电线路的负担加重导致供电线路效率下降,这就要求在感性用电器具上并联一个电容器用以调整其该用电器具的电压、电流相位特性,例如:当时要求所使用的40W日光灯必须并联一个4. >>
  • 来源:www.zhel.com.cn/cpzs/gonglvyinshu/511.html
  •   跟UC3854一样,UC3854B提供了有源功率因数校正的全部功能,这些功能包括电压放大器、模拟乘法/除法器、电流放大器和固定频率PWM,另外,还含有功率MOSFET栅极驱动器、7.5V基准电压、总线预测器、加载赋能比较器、低电压检测器和过流比较器等。平均电流模式的控制使正弦化线电流稳定、低失真而不象峰值电流控制需要斜率补偿。   交流176~264V输入电压经B1整流成为100Hz的正弦半波电压,为了迫使线电流跟随电压变化,UC3854B的脚6经R5引入这个正弦半波线电压取样,内部乘法器将此信号(
  •   跟UC3854一样,UC3854B提供了有源功率因数校正的全部功能,这些功能包括电压放大器、模拟乘法/除法器、电流放大器和固定频率PWM,另外,还含有功率MOSFET栅极驱动器、7.5V基准电压、总线预测器、加载赋能比较器、低电压检测器和过流比较器等。平均电流模式的控制使正弦化线电流稳定、低失真而不象峰值电流控制需要斜率补偿。   交流176~264V输入电压经B1整流成为100Hz的正弦半波电压,为了迫使线电流跟随电压变化,UC3854B的脚6经R5引入这个正弦半波线电压取样,内部乘法器将此信号( >>
  • 来源:info.ec.hc360.com/2007/08/14185490333.shtml
  • 采用220V交流输入。输入电路包括输入EMI、缓启动、浪涌雷击防护整流和输入浪涌电流限制电路,具有较小的开机浪涌电流和较好的电磁兼容性。功率因数校正主电路为Boost电路,控制采用平均电流控制方式,输入端的功率因数接近1,谐波电流小于10%。满足相应的国际标准。
  • 采用220V交流输入。输入电路包括输入EMI、缓启动、浪涌雷击防护整流和输入浪涌电流限制电路,具有较小的开机浪涌电流和较好的电磁兼容性。功率因数校正主电路为Boost电路,控制采用平均电流控制方式,输入端的功率因数接近1,谐波电流小于10%。满足相应的国际标准。 >>
  • 来源:www.pe168.com/com/ccaiks/sell/itemid-1671864.html
  •   目前LED 驱动电源存在驱动能力较低,保护功能较少,输出电压电流不稳定,可靠性差等问题,很难达到要求,根据设计经验提出了驱动电源硬件电路的设计方案,本设计能够很好地提高LED 驱动电源的可靠性。   2. 1 总体电路设计   LED 驱动电源的总体设计如图1 所示。图1 中主电路中U 为220 V 交流输入电压; RC,CC和DC构成RCD 电路; T 为变压器; S 为开关管; D 为整流二极管; C为整流电容; RC为采样电阻,具体电路如图1 所示。   电路在设计时考虑到电路的可靠性,输入端应
  •   目前LED 驱动电源存在驱动能力较低,保护功能较少,输出电压电流不稳定,可靠性差等问题,很难达到要求,根据设计经验提出了驱动电源硬件电路的设计方案,本设计能够很好地提高LED 驱动电源的可靠性。   2. 1 总体电路设计   LED 驱动电源的总体设计如图1 所示。图1 中主电路中U 为220 V 交流输入电压; RC,CC和DC构成RCD 电路; T 为变压器; S 为开关管; D 为整流二极管; C为整流电容; RC为采样电阻,具体电路如图1 所示。   电路在设计时考虑到电路的可靠性,输入端应 >>
  • 来源:www.eeworld.com.cn/LED/2013/0425/article_8829.html
  • 一种新颖的功率因数校正芯片的研究 摘要:介绍了一种新颖的功率因数校正(PFC)芯片。它的主要特点是提高了轻载时的功率因数和改善了电路的动态性能。电路表明:这种新颖的PFC控制芯片实现了这些功能。 关键词:功率因数校正;动态性能;电流补偿 0 引言 随着电力质量标准的贯彻执行,功率因数校正(PFC)技术已成为电力电子领域中的研究热点,PFC变换器已越来越多地应用于开关电源、变频调速器和荧光灯交流电子镇流器中。近几年来,随着PFC技术的发展,PFC控制芯片也有了很大的发展。根据电路的工作模式,PFC控制芯片可
  • 一种新颖的功率因数校正芯片的研究 摘要:介绍了一种新颖的功率因数校正(PFC)芯片。它的主要特点是提高了轻载时的功率因数和改善了电路的动态性能。电路表明:这种新颖的PFC控制芯片实现了这些功能。 关键词:功率因数校正;动态性能;电流补偿 0 引言 随着电力质量标准的贯彻执行,功率因数校正(PFC)技术已成为电力电子领域中的研究热点,PFC变换器已越来越多地应用于开关电源、变频调速器和荧光灯交流电子镇流器中。近几年来,随着PFC技术的发展,PFC控制芯片也有了很大的发展。根据电路的工作模式,PFC控制芯片可 >>
  • 来源:www.dianlutu.net/html/36601/24805.html
  • 摘要: 此文件是一份工程报告,描述的是采用LinkSwitch-PL系列的LNK458KG器件设计的非隔离式、带功率因数校正LED驱动器(电源)。 本文档包含LED驱动器规格、电路原理图、PCB设计图、物料清单、变压器规格文件和典型性能特征。 4.5W非隔离式、带功率因数校正LED驱动器PCB实物图   4.
  • 摘要: 此文件是一份工程报告,描述的是采用LinkSwitch-PL系列的LNK458KG器件设计的非隔离式、带功率因数校正LED驱动器(电源)。 本文档包含LED驱动器规格、电路原理图、PCB设计图、物料清单、变压器规格文件和典型性能特征。 4.5W非隔离式、带功率因数校正LED驱动器PCB实物图 4. >>
  • 来源:www.cndzz.com/diagram/3897_3900/196876.html
  • 品牌:RICHTEK/立锜 封装:SOP-8 批号:17+ 数量:500000   RT8497 RICHTEK/立锜 SOP-8 集成 MOSFET , 满足高 PF 需求的 BCM LED 驱动控制器/PDF/特性及应用/技术支持/全新原装 产品详情: RT8497 由集成化的功率 MOSFET 和 边界模式控制器构成,其用途是构成降压是转换器并通过对内部 MOSFET 的控制实现输出电流的稳定调节。RT8497 含有电流过零检测器,它可使其系统保持工作在边界临界模式,以此获得最优的转换效率,EMI
  • 品牌:RICHTEK/立锜 封装:SOP-8 批号:17+ 数量:500000   RT8497 RICHTEK/立锜 SOP-8 集成 MOSFET , 满足高 PF 需求的 BCM LED 驱动控制器/PDF/特性及应用/技术支持/全新原装 产品详情: RT8497 由集成化的功率 MOSFET 和 边界模式控制器构成,其用途是构成降压是转换器并通过对内部 MOSFET 的控制实现输出电流的稳定调节。RT8497 含有电流过零检测器,它可使其系统保持工作在边界临界模式,以此获得最优的转换效率,EMI >>
  • 来源:www.mianfeiic.com/Product/17413777_1.html
  • 的输出电平发生翻转,将RS触发器置0,关断Q1。器件内设定的比较器门限电压为1.08 V。欠压锁定的作用在于监控电源正极电压。当8脚的电压Vcc低于下限值时,UVLO输出低电平,7脚也输出低电平,关断Q1。定时器的作用是在电感电流下降到零时启动Q1。   2 系统主要技术指标的设计   根据需要,设计了一个150 W PFC系统,其信号流程及信号波形如图3所示。其主要参数为:交流输入电压范围为175~265V;最大输出功率为150 W,若Boost电路的提升电压为400 V,则额定直流电流为375 mA
  • 的输出电平发生翻转,将RS触发器置0,关断Q1。器件内设定的比较器门限电压为1.08 V。欠压锁定的作用在于监控电源正极电压。当8脚的电压Vcc低于下限值时,UVLO输出低电平,7脚也输出低电平,关断Q1。定时器的作用是在电感电流下降到零时启动Q1。   2 系统主要技术指标的设计   根据需要,设计了一个150 W PFC系统,其信号流程及信号波形如图3所示。其主要参数为:交流输入电压范围为175~265V;最大输出功率为150 W,若Boost电路的提升电压为400 V,则额定直流电流为375 mA >>
  • 来源:data.weeqoo.com/2010/8/201081915471310376.html
  • UPS电源 产品性能: 绿色环保型 本产品为绿色环保型产品,符合欧盟环保指令ROHS的各项要求和国家电子信息产品污染控制管理办法,在产品正常使用情况下,不会对环境及人身造成损害。 有源输入功率因数校正(PFC) 采用数字化控制的有源功率因数校正技术,以避免电网环境受到污染,达到节约能源,降低系统成本的目的。 宽输入电压频率范围 极宽的输入电压和频率范围,即使在电力环境非常恶劣的地区也能正常供电,减少了电池放电的次数,提高电池的使用寿命。 可搭配发电机使用 输入电压与频率范围广,能有效隔离发电机产生的不良电
  • UPS电源 产品性能: 绿色环保型 本产品为绿色环保型产品,符合欧盟环保指令ROHS的各项要求和国家电子信息产品污染控制管理办法,在产品正常使用情况下,不会对环境及人身造成损害。 有源输入功率因数校正(PFC) 采用数字化控制的有源功率因数校正技术,以避免电网环境受到污染,达到节约能源,降低系统成本的目的。 宽输入电压频率范围 极宽的输入电压和频率范围,即使在电力环境非常恶劣的地区也能正常供电,减少了电池放电的次数,提高电池的使用寿命。 可搭配发电机使用 输入电压与频率范围广,能有效隔离发电机产生的不良电 >>
  • 来源:price.zol.com.cn/644/6442764.html
  •   在图1中,5脚是零电流检测输入端,接在变压器二次侧,因而检测到的是电感电流,即外电源流入负载的电流。当电感电流为零时,ZCD的输出翻转,将内部的RS触发器置1,7脚输出高电平,使Q1导通。外电源通过桥式整流,使变压器一次侧和Q1导通,电流流过变压器一次侧,将电能储存于电感中。当电感电流增大到一定值时,Q1又关断,这也是通过RS触发器进行控制的。1脚接PFC输出电压的分压,该电压经EMP放大后,与由3脚输入的电压分压值在MULT中相乘,MULT的输出与由4脚输入的Q1的电流比较。   当输入Q1的电
  •   在图1中,5脚是零电流检测输入端,接在变压器二次侧,因而检测到的是电感电流,即外电源流入负载的电流。当电感电流为零时,ZCD的输出翻转,将内部的RS触发器置1,7脚输出高电平,使Q1导通。外电源通过桥式整流,使变压器一次侧和Q1导通,电流流过变压器一次侧,将电能储存于电感中。当电感电流增大到一定值时,Q1又关断,这也是通过RS触发器进行控制的。1脚接PFC输出电压的分压,该电压经EMP放大后,与由3脚输入的电压分压值在MULT中相乘,MULT的输出与由4脚输入的Q1的电流比较。   当输入Q1的电 >>
  • 来源:www.dzsc.com/data/html/2010-8-19/84901.html
  • 图8:低频滤波器被动功率因数校正电路 电路参数要设计成对50Hz的基波成份衰减很小,对三次以上谐波成份衰减很大,尤其是第三次谐波(150Hz)的衰减最大。 低频谐波电流抑制滤波器在电源整流之后或者之前的某些点插入电流回路,就可以起到抑制谐波电流的目的。 可以解决300W以下产品的谐波电流问题,并且不需要电路其它参数作任何改变,也不会降低原电源电路的其它性能。 其缺点是体积较大,重量约100-200克。 3.
  • 图8:低频滤波器被动功率因数校正电路 电路参数要设计成对50Hz的基波成份衰减很小,对三次以上谐波成份衰减很大,尤其是第三次谐波(150Hz)的衰减最大。 低频谐波电流抑制滤波器在电源整流之后或者之前的某些点插入电流回路,就可以起到抑制谐波电流的目的。 可以解决300W以下产品的谐波电流问题,并且不需要电路其它参数作任何改变,也不会降低原电源电路的其它性能。 其缺点是体积较大,重量约100-200克。 3. >>
  • 来源:www.safetyemc.cn/emc/201705/31/1571.html
  • MPFC的关断时间取决于LPFC放电到零的时间。可用连接到ZX脚的LPFC二次侧绕组来检测零电流。如果电流没有降为零,那么ZX脚将不会检测到上升沿,此时MPFC将保持关断。如果ZX脚没有检测到上升沿的时间超过500ms,那么芯片内部定时器将强迫MPFC开通(开通时间由COMP脚的电压决定)。直到ZX脚出现正确的上升和下降沿信号,PFC正常工作为止。 表1 IR2167引脚排列
  • MPFC的关断时间取决于LPFC放电到零的时间。可用连接到ZX脚的LPFC二次侧绕组来检测零电流。如果电流没有降为零,那么ZX脚将不会检测到上升沿,此时MPFC将保持关断。如果ZX脚没有检测到上升沿的时间超过500ms,那么芯片内部定时器将强迫MPFC开通(开通时间由COMP脚的电压决定)。直到ZX脚出现正确的上升和下降沿信号,PFC正常工作为止。 表1 IR2167引脚排列 >>
  • 来源:www.lighting86.com.cn/expo/hot_expo_viewinfo_1144263864514577.html
  • 图书信息内容简介 本书结合国内外有源功率因数校正(APFC)技术的发展和应用,对功率因数校正(PFC)技术进行了较为全面的论述。主要内容包括:无源功率因数校正(PPFC)技术、有源功率因数校正技术的典型拓扑结构和控制策略、单相单级PFC变换器、三相PFC变换器、无桥PFC电路、交错技术在PFC中的应用、PFC的数字控制技术以及PFC 技术在开关电源中的应用等。有源功率因数校正技术 编者力图反映国内外电力电子技术领域在APFC技术方面的进展和所取得的研究成果,以便读者系统、全面地了解和掌握。本书可供从事开
  • 图书信息内容简介 本书结合国内外有源功率因数校正(APFC)技术的发展和应用,对功率因数校正(PFC)技术进行了较为全面的论述。主要内容包括:无源功率因数校正(PPFC)技术、有源功率因数校正技术的典型拓扑结构和控制策略、单相单级PFC变换器、三相PFC变换器、无桥PFC电路、交错技术在PFC中的应用、PFC的数字控制技术以及PFC 技术在开关电源中的应用等。有源功率因数校正技术 编者力图反映国内外电力电子技术领域在APFC技术方面的进展和所取得的研究成果,以便读者系统、全面地了解和掌握。本书可供从事开 >>
  • 来源:m.itfly.net/a/yingjian/article-297671-1.html
  • 图1 高频有源PFC 电路框图 3 大屏幕彩电开关电源的PF分析 现有的大屏幕彩电内用开关电源一般采用全桥不可控整流电路直接加电解电容滤波电路。图2 示出该电路形式。 R2 用以限制合闸电流, 当输入滤波电解电容充满电后, K 闭合, R2 断接, 电路的交流输入电压、电流波形见图3。由图3 可见, 只有当网侧电压幅值高于电解电容电压时, 电流才从电网中抽出, 因而电流谐波成分很大。计算出这种波形的λ很低, 一般在0.
  • 图1 高频有源PFC 电路框图 3 大屏幕彩电开关电源的PF分析 现有的大屏幕彩电内用开关电源一般采用全桥不可控整流电路直接加电解电容滤波电路。图2 示出该电路形式。 R2 用以限制合闸电流, 当输入滤波电解电容充满电后, K 闭合, R2 断接, 电路的交流输入电压、电流波形见图3。由图3 可见, 只有当网侧电压幅值高于电解电容电压时, 电流才从电网中抽出, 因而电流谐波成分很大。计算出这种波形的λ很低, 一般在0. >>
  • 来源:www.t262.com/read/159621.html
  • <a href="http://www.ti.com.cn/product/cn/ucc28019" target="extwin">ucc28019</a>功率因数校正输入电流波形到峰值总是这种问题(换了几个电感波形到峰值就降为零又升上来又将为零),电路与数据手册基本一样的,只有采样电阻有变化,小负载带不动,我应该怎么去改?在线等<a href="/cfs-file.
  • <a href="http://www.ti.com.cn/product/cn/ucc28019" target="extwin">ucc28019</a>功率因数校正输入电流波形到峰值总是这种问题(换了几个电感波形到峰值就降为零又升上来又将为零),电路与数据手册基本一样的,只有采样电阻有变化,小负载带不动,我应该怎么去改?在线等<a href="/cfs-file. >>
  • 来源:www.deyisupport.com/question_answer/analog/power_management/f/24/p/68855/163121.aspx