• 图1 电流环接口   其发送端与接收端各有一个光电耦合器。   在有源的发送端,当信号为"1"时,三极管T1导通,光电耦合器中的三极管有电流通过,选择电阻R1,使环路中的电流为15 mA~20mA。此电流使接收端光耦器的三极管导通,经反相门整形后输出为"1"。当信号为"0", T1截止,环路上无电流,接收端光耦器的三极管截止,经反相门整形后输出为"0"。   在无源的发送端,当信号为"1" 时,T2导通,选择电阻R3使环路上的电流为15 mA~20mA,此电流使有源接收端光耦器的三极
  • 图1 电流环接口   其发送端与接收端各有一个光电耦合器。   在有源的发送端,当信号为"1"时,三极管T1导通,光电耦合器中的三极管有电流通过,选择电阻R1,使环路中的电流为15 mA~20mA。此电流使接收端光耦器的三极管导通,经反相门整形后输出为"1"。当信号为"0", T1截止,环路上无电流,接收端光耦器的三极管截止,经反相门整形后输出为"0"。   在无源的发送端,当信号为"1" 时,T2导通,选择电阻R3使环路上的电流为15 mA~20mA,此电流使有源接收端光耦器的三极 >>
  • 来源:www.360doc.com/content/15/0210/21/21287212_447773917.shtml
  • 先搞懂RC的作用 IS(有的芯片叫CS)端子是个输入端子,动作很精细,阻抗也很高,容易被干扰,要避免被干扰,应尽量降低(外部)阻抗。 1、当只检测电流信号时,最佳值是R=0,这样阻抗为Rcs,欧姆或亚欧姆数量级,啥滤波都不需要。 2、当需要同时检测其他信号时,比如你通过C8过来的CT/RT信号,还有的需要引入线电压补偿信号等等,因为Rcs阻抗太低,这些信号可能被旁路,此时才需要R>0,大多少?越小越好,如果100能搞定,就不要200,怎么才能更小?以这些附加信号的通道参数不离谱为度。 3、当R搞定
  • 先搞懂RC的作用 IS(有的芯片叫CS)端子是个输入端子,动作很精细,阻抗也很高,容易被干扰,要避免被干扰,应尽量降低(外部)阻抗。 1、当只检测电流信号时,最佳值是R=0,这样阻抗为Rcs,欧姆或亚欧姆数量级,啥滤波都不需要。 2、当需要同时检测其他信号时,比如你通过C8过来的CT/RT信号,还有的需要引入线电压补偿信号等等,因为Rcs阻抗太低,这些信号可能被旁路,此时才需要R>0,大多少?越小越好,如果100能搞定,就不要200,怎么才能更小?以这些附加信号的通道参数不离谱为度。 3、当R搞定 >>
  • 来源:bbs.21dianyuan.com/thread-242193-1-3.html
  •   保护电路应兼有反向电压保护与正向过压保护两种功能。XTR115的保护电路如图3所示。反向电压保护电路由二极管整流桥VD1~VD4组成,可防止因将环路电源的极性接反而损坏芯片。整流二极管可选用1N4148型高速硅开关二极管,其主要参数为URM=75V,Id=150mA,trr=4ns。采用桥式保护电路之后就不用再考虑环路电源的极性,因为,无论Us的极性是否接反,它总能保证U+端接得是正电压。鉴于在任何时刻整流桥上总有两只二极管导通,因此,在计算环路电压ULOOP时须扣除两只硅二极管的正向压降(约为1.
  •   保护电路应兼有反向电压保护与正向过压保护两种功能。XTR115的保护电路如图3所示。反向电压保护电路由二极管整流桥VD1~VD4组成,可防止因将环路电源的极性接反而损坏芯片。整流二极管可选用1N4148型高速硅开关二极管,其主要参数为URM=75V,Id=150mA,trr=4ns。采用桥式保护电路之后就不用再考虑环路电源的极性,因为,无论Us的极性是否接反,它总能保证U+端接得是正电压。鉴于在任何时刻整流桥上总有两只二极管导通,因此,在计算环路电压ULOOP时须扣除两只硅二极管的正向压降(约为1. >>
  • 来源:www.dz-z.com/n/The-working-principle-of-transducer-and-its-application
  • 1、前言 随着现代工业的高速发展,多电机交流控制系统已经被广泛地应用于造纸、化工、钢铁、食品等工业领域,而且形成了各自独特的变频器控制系统。在实际运行中,这样的控制系统具有可靠性强、抗干扰率高,但相应的维护费用却随着时日的推移而越来越高。比如,某类型的变频器采用其独特的通讯协议和通讯接口,一旦通讯故障所造成的通讯接口板烧毁将直接导致系统的崩溃,除非购买该型号的通讯接口;同样如果该变频器由于烧毁,亦需要购买同型号的变频器;另外,系统要升级换代,必须全面更换所有变频器。如此一来,采购费用巨大、备品库存积压等现
  • 1、前言 随着现代工业的高速发展,多电机交流控制系统已经被广泛地应用于造纸、化工、钢铁、食品等工业领域,而且形成了各自独特的变频器控制系统。在实际运行中,这样的控制系统具有可靠性强、抗干扰率高,但相应的维护费用却随着时日的推移而越来越高。比如,某类型的变频器采用其独特的通讯协议和通讯接口,一旦通讯故障所造成的通讯接口板烧毁将直接导致系统的崩溃,除非购买该型号的通讯接口;同样如果该变频器由于烧毁,亦需要购买同型号的变频器;另外,系统要升级换代,必须全面更换所有变频器。如此一来,采购费用巨大、备品库存积压等现 >>
  • 来源:www.chinaswitch.com/qiugou/show-id-460499.html
  • 基于上述因地电势不同而存在的隐患,可以用数字隔离的方式将MCU与电流环DAC及HART调制器进行隔离,电流环DAC及HART调制器属浮地形式,使得两线制仪表与PLC系统两个地电势之间形成高阻抗,降低地线之间的回路电流,形成两个设备间的电气隔离,从而降低了4-20mA信号的传输误差,同时消除了共模干扰的隐患。 因为两线制仪表没有额外的供电端口,其供电都是通过4-20mA环路取电,采用这种隔离方式后,HART调制器的2.
  • 基于上述因地电势不同而存在的隐患,可以用数字隔离的方式将MCU与电流环DAC及HART调制器进行隔离,电流环DAC及HART调制器属浮地形式,使得两线制仪表与PLC系统两个地电势之间形成高阻抗,降低地线之间的回路电流,形成两个设备间的电气隔离,从而降低了4-20mA信号的传输误差,同时消除了共模干扰的隐患。 因为两线制仪表没有额外的供电端口,其供电都是通过4-20mA环路取电,采用这种隔离方式后,HART调制器的2. >>
  • 来源:www.ca168.com/paper/show-1943.html
  •   AD694可用作数/模转换器(DAC)的电流环接口,实现数字量电压信号电流信号的转换。DAC的电流环接口电路如图所示。AD566A为高速12位DAC,其输出端(DAC OUT)接AD694的UI-端,UI+端接地。AD694采用15V双电源供电,并给AD566A提供基准电压。利用AD566A的内部电阻网络将AD694配置成10V满刻度输入。C2为频率补偿电容。RP为满刻度调整电位器,不需要调整时可用50的固定电阻来代替电位器。 来源:
  •   AD694可用作数/模转换器(DAC)的电流环接口,实现数字量电压信号电流信号的转换。DAC的电流环接口电路如图所示。AD566A为高速12位DAC,其输出端(DAC OUT)接AD694的UI-端,UI+端接地。AD694采用15V双电源供电,并给AD566A提供基准电压。利用AD566A的内部电阻网络将AD694配置成10V满刻度输入。C2为频率补偿电容。RP为满刻度调整电位器,不需要调整时可用50的固定电阻来代替电位器。 来源: >>
  • 来源:www.dzsc.com/application/html/2010-12-28/21448.html
  • 照片说明:80V 同步降压-升压型 DC/DC 控制器 性能概要:LT8705  单电感器架构  以高于、低于或等于输出电压的输入电压工作  2.8V 至 80V 输入电压范围  1.3V 至 80V 输出电压范围  四个调节环路 (输入电压 / 电流和输出电压 / 电流)  同步整流  效率高达 98%  四个内置 MOSFET 栅极驱动器  单个器件可提供 250W 输出功率  100kHz 至 400kHz 固定可同步工作频率  伺服引脚指示哪个反馈引脚在工作  3.
  • 照片说明:80V 同步降压-升压型 DC/DC 控制器 性能概要:LT8705 单电感器架构 以高于、低于或等于输出电压的输入电压工作 2.8V 至 80V 输入电压范围 1.3V 至 80V 输出电压范围 四个调节环路 (输入电压 / 电流和输出电压 / 电流) 同步整流 效率高达 98% 四个内置 MOSFET 栅极驱动器 单个器件可提供 250W 输出功率 100kHz 至 400kHz 固定可同步工作频率 伺服引脚指示哪个反馈引脚在工作 3. >>
  • 来源:www.kctkj.com/newslist/5/885.html
  •   图 2 交流伺服系统控制原理图   3 Simulink仿真并生成PLC代码   根据上面对交流伺服系统的建模和参数计算结果,在Simulink中构建系统原理图如图3所示。首先通过Simulink仿真来确定位置环比例调节器系数Kp,即把Kp由小到大逐步仿真,直至系统发散,然后把Kp减小至系统无超调,最后得到整定值0.
  •   图 2 交流伺服系统控制原理图   3 Simulink仿真并生成PLC代码   根据上面对交流伺服系统的建模和参数计算结果,在Simulink中构建系统原理图如图3所示。首先通过Simulink仿真来确定位置环比例调节器系数Kp,即把Kp由小到大逐步仿真,直至系统发散,然后把Kp减小至系统无超调,最后得到整定值0. >>
  • 来源:www.idnovo.com.cn/zhizao/show.php?itemid=28508
  • 基于上述因地电势不同而存在的隐患,可以用数字隔离的方式将MCU与电流环DAC及HART调制器进行隔离,电流环DAC及HART调制器属浮地形式,使得两线制仪表与PLC系统两个地电势之间形成高阻抗,降低地线之间的回路电流,形成两个设备间的电气隔离,从而降低了4-20mA信号的传输误差,同时消除了共模干扰的隐患。 因为两线制仪表没有额外的供电端口,其供电都是通过4-20mA环路取电,采用这种隔离方式后,HART调制器的2.
  • 基于上述因地电势不同而存在的隐患,可以用数字隔离的方式将MCU与电流环DAC及HART调制器进行隔离,电流环DAC及HART调制器属浮地形式,使得两线制仪表与PLC系统两个地电势之间形成高阻抗,降低地线之间的回路电流,形成两个设备间的电气隔离,从而降低了4-20mA信号的传输误差,同时消除了共模干扰的隐患。 因为两线制仪表没有额外的供电端口,其供电都是通过4-20mA环路取电,采用这种隔离方式后,HART调制器的2. >>
  • 来源:www.ca168.com/paper/show-1943.html
  • 摘要:从HART协议智能变磅器的功能和协议要求出发,在详细讨论、分析HART协议智能变送器的设计重点、难点和技术关键的基础上,设计完整的HART协议智能压力/差压变送器的实用电路。它可以实现HART协议智能变送器的基本功能。 关键词:HART协议 智能变送器 现场总线 数字数据通信 概述 现场总线技术是当前自动检测技术的热点之一。从现场总线技术形成来看,它是控制、计算机、通信、网络等技术发展的必然结果;而智能仪表则为现场总线的出现和应用奠定了基础。自1983年Honeywell推出智能仪表--Smar变送
  • 摘要:从HART协议智能变磅器的功能和协议要求出发,在详细讨论、分析HART协议智能变送器的设计重点、难点和技术关键的基础上,设计完整的HART协议智能压力/差压变送器的实用电路。它可以实现HART协议智能变送器的基本功能。 关键词:HART协议 智能变送器 现场总线 数字数据通信 概述 现场总线技术是当前自动检测技术的热点之一。从现场总线技术形成来看,它是控制、计算机、通信、网络等技术发展的必然结果;而智能仪表则为现场总线的出现和应用奠定了基础。自1983年Honeywell推出智能仪表--Smar变送 >>
  • 来源:www.kejianhome.com/lunwen/435/489/68622.html
  • 图3:集成无源滤波器且支持HART的输入。 不幸的是,真实情况远没有那么简单。当一条完整的消息经过HART发送后,HART FSK调制信号频谱不仅在基频调制频率处包含电能,且在1.2kHz与2.2kHz载波之间、下方和上方包含频率分量。图4显示了HART FSK消息在ADC输入端的典型频谱,以及通过SINC3滤波器以400Hz陷波衰减时的频谱。本例中,主机发送HART命令3,从机响应该命令。
  • 图3:集成无源滤波器且支持HART的输入。 不幸的是,真实情况远没有那么简单。当一条完整的消息经过HART发送后,HART FSK调制信号频谱不仅在基频调制频率处包含电能,且在1.2kHz与2.2kHz载波之间、下方和上方包含频率分量。图4显示了HART FSK消息在ADC输入端的典型频谱,以及通过SINC3滤波器以400Hz陷波衰减时的频谱。本例中,主机发送HART命令3,从机响应该命令。 >>
  • 来源:e.pinnace.cn/65186.shtml
  • 如图下图 虚线框所示, 为通过 P WM 方式来实现DA 转换的电路图, 这个设计为了降低 成本, 采用S T M 8 单片机的 1 6 位定时器产生 PWM , PWM 占空比 2500 级可调, 则 DA 精度大于 1 0 位, 精度完全可以满足要求, 采用一阶低通滤波器滤波, 得到模拟量。该调节器的电流环和电压环自动切换, 在设定的限流值没达到前, 电压环起调节作用, 当设定的限流值达到时, 电流环起作用。下面我们来分析电流环的工作原理, 首先由单片机的 PWM 引脚输出PWM 信号经过 RC 低通
  • 如图下图 虚线框所示, 为通过 P WM 方式来实现DA 转换的电路图, 这个设计为了降低 成本, 采用S T M 8 单片机的 1 6 位定时器产生 PWM , PWM 占空比 2500 级可调, 则 DA 精度大于 1 0 位, 精度完全可以满足要求, 采用一阶低通滤波器滤波, 得到模拟量。该调节器的电流环和电压环自动切换, 在设定的限流值没达到前, 电压环起调节作用, 当设定的限流值达到时, 电流环起作用。下面我们来分析电流环的工作原理, 首先由单片机的 PWM 引脚输出PWM 信号经过 RC 低通 >>
  • 来源:www.qiangchidz.com/xinwenzhongxin/93.html
  •   保护电路应兼有反向电压保护与正向过压保护两种功能。XTR115的保护电路如图3所示。反向电压保护电路由二极管整流桥VD1~VD4组成,可防止因将环路电源的极性接反而损坏芯片。整流二极管可选用1N4148型高速硅开关二极管,其主要参数为URM=75V,Id=150mA,trr=4ns。采用桥式保护电路之后就不用再考虑环路电源的极性,因为,无论Us的极性是否接反,它总能保证U+端接得是正电压。鉴于在任何时刻整流桥上总有两只二极管导通,因此,在计算环路电压ULOOP时须扣除两只硅二极管的正向压降(约为1.
  •   保护电路应兼有反向电压保护与正向过压保护两种功能。XTR115的保护电路如图3所示。反向电压保护电路由二极管整流桥VD1~VD4组成,可防止因将环路电源的极性接反而损坏芯片。整流二极管可选用1N4148型高速硅开关二极管,其主要参数为URM=75V,Id=150mA,trr=4ns。采用桥式保护电路之后就不用再考虑环路电源的极性,因为,无论Us的极性是否接反,它总能保证U+端接得是正电压。鉴于在任何时刻整流桥上总有两只二极管导通,因此,在计算环路电压ULOOP时须扣除两只硅二极管的正向压降(约为1. >>
  • 来源:www.dz-z.com/n/The-working-principle-of-transducer-and-its-application
  • 概述 HB5900是一款适用于需要双控制环路实现恒压和恒流的开关电源的高集成解决方案。芯片内部集成一个电压源,三个运放(开漏相或输出)。基准电压和其中一个运放的作为电压控制环路的核心,一个运放来控制恒流环路,电流采样电路和另一个运放来控制限流环路。外置引脚使客户很容易根据所采用的系统拓扑结构对三个运放环路的带宽和稳定性补偿进行设置。专有的线缆和电流采样电阻压降补偿技术实现理想的电池端恒压功能。开漏输出的充电状态指示可使电池充电器外围更为简化。 功能特性简述 次边恒流和恒压控制 快速限流控制有效地提高系统工
  • 概述 HB5900是一款适用于需要双控制环路实现恒压和恒流的开关电源的高集成解决方案。芯片内部集成一个电压源,三个运放(开漏相或输出)。基准电压和其中一个运放的作为电压控制环路的核心,一个运放来控制恒流环路,电流采样电路和另一个运放来控制限流环路。外置引脚使客户很容易根据所采用的系统拓扑结构对三个运放环路的带宽和稳定性补偿进行设置。专有的线缆和电流采样电阻压降补偿技术实现理想的电池端恒压功能。开漏输出的充电状态指示可使电池充电器外围更为简化。 功能特性简述 次边恒流和恒压控制 快速限流控制有效地提高系统工 >>
  • 来源:www.ioocoo.com/trade/2016021710348624.html
  • 图5:SINC3滤波器与模拟滤波器。 模拟滤波器在硬件中固定,并具有固定的建立时间。对于系统输入端的快速变化模拟信号而言,模拟滤波器输出误差由其较慢的建立时间决定。例如,如果系统输入每40ms改变满量程,则滤波器输出不会建立至正确值1%以内。对于较慢的输入信号而言,模拟滤波器输出误差由其抑制HART FSK信号低频分量的能力决定。对于典型HART命令3消息而言,该误差测量值约为4mA至20mA满量程的0.
  • 图5:SINC3滤波器与模拟滤波器。 模拟滤波器在硬件中固定,并具有固定的建立时间。对于系统输入端的快速变化模拟信号而言,模拟滤波器输出误差由其较慢的建立时间决定。例如,如果系统输入每40ms改变满量程,则滤波器输出不会建立至正确值1%以内。对于较慢的输入信号而言,模拟滤波器输出误差由其抑制HART FSK信号低频分量的能力决定。对于典型HART命令3消息而言,该误差测量值约为4mA至20mA满量程的0. >>
  • 来源:e.pinnace.cn/65186.shtml
  • 即使Dixon的文章里,电流采样,用了复杂的运放电路,这个电路就可以起到低通滤波的作用。 或对电流积分或滤波都是一个道理。 人为的把占空比到电感电流,制造成了惯性环节。 这样,就可以变成串级控制。 电压环路的PID输出设定与被低通滤波的电流比较,输出占空比令电感电流变化,但电感电流回路的时间常数必须远远低于电压环路的。 因为不是真正的串级控制,所以还是有点问题的。 首先,在电压设定给电感电流时,动态的过程,电流的动态变化,不可能不对输出电压产生影响。 这个变化是要有更慢的电压环路控制的,完全可能产生不可调
  • 即使Dixon的文章里,电流采样,用了复杂的运放电路,这个电路就可以起到低通滤波的作用。 或对电流积分或滤波都是一个道理。 人为的把占空比到电感电流,制造成了惯性环节。 这样,就可以变成串级控制。 电压环路的PID输出设定与被低通滤波的电流比较,输出占空比令电感电流变化,但电感电流回路的时间常数必须远远低于电压环路的。 因为不是真正的串级控制,所以还是有点问题的。 首先,在电压设定给电感电流时,动态的过程,电流的动态变化,不可能不对输出电压产生影响。 这个变化是要有更慢的电压环路控制的,完全可能产生不可调 >>
  • 来源:bbs.21dianyuan.com/thread-168843-1-1.html
  • 在逆变器实际运行中,六个非零矢量磁通运动的轨迹为正六边形,形成了正六边形的旋转磁场。我们希望得到的是圆形的旋转磁场,因此需要得到其它角度的电压矢量。这就需要我们用六个非零电压矢量和两个零矢量的线性时间组合来合成我们希望得到的新的电压矢量。当PWM的周期足够小时,电压空间矢量的轨迹便可以近似为圆形
  • 在逆变器实际运行中,六个非零矢量磁通运动的轨迹为正六边形,形成了正六边形的旋转磁场。我们希望得到的是圆形的旋转磁场,因此需要得到其它角度的电压矢量。这就需要我们用六个非零电压矢量和两个零矢量的线性时间组合来合成我们希望得到的新的电压矢量。当PWM的周期足够小时,电压空间矢量的轨迹便可以近似为圆形 >>
  • 来源:www.ca168.com/paper/show-1257.html