•   差动放大电路图 (a)射极偏置差放 (b)电流源偏置差放   差动放大电路有两个输入端子和两个输出端子,因此信号的输入和输出均有双端和单端两种方式。双端输入时,信号同时加到两输入端;单端输入时,信号加到一个输入端与地之间,另一个输入端接地。双端输出时,信号取于两输出端之间;单端输出时,信号取于一个输出端到地之间。因此,差动放大电路有双端输入双端输出、单端输入双端输出、双端输入单端输出、单端输入单端输出四种应用方式。上面两个差动放大器电路均为双端输入双端输出方式。   差动放大电路的外信号输入分差模和
  •   差动放大电路图 (a)射极偏置差放 (b)电流源偏置差放   差动放大电路有两个输入端子和两个输出端子,因此信号的输入和输出均有双端和单端两种方式。双端输入时,信号同时加到两输入端;单端输入时,信号加到一个输入端与地之间,另一个输入端接地。双端输出时,信号取于两输出端之间;单端输出时,信号取于一个输出端到地之间。因此,差动放大电路有双端输入双端输出、单端输入双端输出、双端输入单端输出、单端输入单端输出四种应用方式。上面两个差动放大器电路均为双端输入双端输出方式。   差动放大电路的外信号输入分差模和 >>
  • 来源:www.dzsc.com/data/html/2008-10-21/71513.html
  • 差动放大电路图 (a)射极偏置差放 (b)电流源偏置差放 差动放大电路有两个输入端子和两个输出端子,因此信号的输入和输出均有双端和单端两种方式。双端输入时,信号同时加到两输入端;单端输入时,信号加到一个输入端与地之间,另一个输入端接地。双端输出时,信号取于两输出端之间;单端输出时,信号取于一个输出端到地之间。因此,差动放大电路有双端输入双端输出、单端输入双端输出、双端输入单端输出、单端输入单端输出四种应用方式。上面两个差动放大器电路均为双端输入双端输出方式。 差动放大电路的外信号输入分差模和共模两种基本
  • 差动放大电路图 (a)射极偏置差放 (b)电流源偏置差放 差动放大电路有两个输入端子和两个输出端子,因此信号的输入和输出均有双端和单端两种方式。双端输入时,信号同时加到两输入端;单端输入时,信号加到一个输入端与地之间,另一个输入端接地。双端输出时,信号取于两输出端之间;单端输出时,信号取于一个输出端到地之间。因此,差动放大电路有双端输入双端输出、单端输入双端输出、双端输入单端输出、单端输入单端输出四种应用方式。上面两个差动放大器电路均为双端输入双端输出方式。 差动放大电路的外信号输入分差模和共模两种基本 >>
  • 来源:www.hqew.com/tech/doc/482693.html
  • 差动放大器电路是由特性相同的两放大管(称差动对管)及其他元件组成的电路结构对称的放大电路,利用对称性来实现电路的相互补偿,减少零点漂移。 差动放大电路工作原理 基本差动放大电路:下图为差动放大器的两种典型电路。其中左图为射极偏置,右图为电流源偏置。  差动放大电路图 (a)射极偏置差放 (b)电流源偏置差放 差动放大电路有两个输入端子和两个输出端子,因此信号的输入和输出均有双端和单端两种方式。双端输入时,信号同时加到两输入端;单端输入时,信号加到一个输入端与地之间,另一个输入端接地。双端输出时,信号取于两
  • 差动放大器电路是由特性相同的两放大管(称差动对管)及其他元件组成的电路结构对称的放大电路,利用对称性来实现电路的相互补偿,减少零点漂移。 差动放大电路工作原理 基本差动放大电路:下图为差动放大器的两种典型电路。其中左图为射极偏置,右图为电流源偏置。 差动放大电路图 (a)射极偏置差放 (b)电流源偏置差放 差动放大电路有两个输入端子和两个输出端子,因此信号的输入和输出均有双端和单端两种方式。双端输入时,信号同时加到两输入端;单端输入时,信号加到一个输入端与地之间,另一个输入端接地。双端输出时,信号取于两 >>
  • 来源:www.rhwell.com/2016/01/18421002.html
  • 现代功放随着性能的不断提高,电路结构也越来越复杂,这是业余制作者尤其是初学者最感头痛的问题,这里向大家介绍一个最简功放电路,看一看能简化到什么程度,又能达到怎样的性能,这也是一个令人感兴趣的问题. 电路原理和性能(1)电......
  • 现代功放随着性能的不断提高,电路结构也越来越复杂,这是业余制作者尤其是初学者最感头痛的问题,这里向大家介绍一个最简功放电路,看一看能简化到什么程度,又能达到怎样的性能,这也是一个令人感兴趣的问题. 电路原理和性能(1)电...... >>
  • 来源:diagram.eepw.com.cn/diagram/listbylabel/label/%E5%8A%9F%E7%8E%87%E6%94%BE%E5%A4%A7%E7%94%B5%E8%B7%AF
  • 该音频功率放大器可在4到16欧姆扬声器提供高达200W的一流音质。工作电压为24和36V之间,最大5A电流,频率响应是从20到20000赫兹。请把晶体管和集成电路固定牢固,单独安装足够面积的散热器。 散热器注意保持绝缘,不能有任何电气连接!晶体管必须和散热器良好接触并固定牢固!晶体管是这个大功率放大器的重要元件,产生热量比较多。  200W功率放大器的电路原理图 电源应足够强大以满足放大器的功率消耗,最大电流可以高达5A。 该放大器输入灵敏度约500至800mV。因此,连接输出电平较低的声源,有必要预先连
  • 该音频功率放大器可在4到16欧姆扬声器提供高达200W的一流音质。工作电压为24和36V之间,最大5A电流,频率响应是从20到20000赫兹。请把晶体管和集成电路固定牢固,单独安装足够面积的散热器。 散热器注意保持绝缘,不能有任何电气连接!晶体管必须和散热器良好接触并固定牢固!晶体管是这个大功率放大器的重要元件,产生热量比较多。 200W功率放大器的电路原理图 电源应足够强大以满足放大器的功率消耗,最大电流可以高达5A。 该放大器输入灵敏度约500至800mV。因此,连接输出电平较低的声源,有必要预先连 >>
  • 来源:www.360doc.com/content/14/0805/01/12109864_399481357.shtml
  •   运放输出为容性负载时易产生振荡。运放接容性负载通常有两种情况,一种是印制板的布线与电缆接线的分布电容,另一种是某些电子装置接在运放的输出端,这种电子装置为了消除外部高频信号的影响,在输入与地之间接入较大的电解电容。不同种类的运放对容性负载的承受能力是不同的,常用的CMOS运放对容性负载的承受能力更弱。为此,使用CMOS运放时,在输出端要串联电阻,对容性负载做必要的处理。如图是采用CMOS运放TLC72C的2倍电压增益的同相放大电路。由22OpF电容与1Ok打电阻构成容性负载,使电路容易产生振荡。
  •   运放输出为容性负载时易产生振荡。运放接容性负载通常有两种情况,一种是印制板的布线与电缆接线的分布电容,另一种是某些电子装置接在运放的输出端,这种电子装置为了消除外部高频信号的影响,在输入与地之间接入较大的电解电容。不同种类的运放对容性负载的承受能力是不同的,常用的CMOS运放对容性负载的承受能力更弱。为此,使用CMOS运放时,在输出端要串联电阻,对容性负载做必要的处理。如图是采用CMOS运放TLC72C的2倍电压增益的同相放大电路。由22OpF电容与1Ok打电阻构成容性负载,使电路容易产生振荡。 >>
  • 来源:www.dzsc.com/data/Circuit-16520.html
  • AD781是高速单片采样保持放大器(SHA),它确保在整个温度范围内有最大700ns采样时间达到0.01%,规定和测试保持模式总谐波失真和保持模式信号噪声与失真。AD781包含一个单位增益放大器、一个自纠正功能结构电路,它能够使保持误差最小,以保证在保持模式下在整个温度范围内放大器的精确度。AD781自身包含所有元件而无需外围元件和调节。低功耗、8脚小型封装和芯片完整性使之成为高度紧凑电路板的理想选择元件,而极好的线性、保持模式DC和动态特性使得其成为高速12bit和14bit高速模拟一数字变换器的理想选
  • AD781是高速单片采样保持放大器(SHA),它确保在整个温度范围内有最大700ns采样时间达到0.01%,规定和测试保持模式总谐波失真和保持模式信号噪声与失真。AD781包含一个单位增益放大器、一个自纠正功能结构电路,它能够使保持误差最小,以保证在保持模式下在整个温度范围内放大器的精确度。AD781自身包含所有元件而无需外围元件和调节。低功耗、8脚小型封装和芯片完整性使之成为高度紧凑电路板的理想选择元件,而极好的线性、保持模式DC和动态特性使得其成为高速12bit和14bit高速模拟一数字变换器的理想选 >>
  • 来源:ic72.com/technology/info_124855.html
  •   图3 - 双单声道电源   对于这两种用品,我建议一个300VA的变压器和35A桥整流器最佳调节。对于115V的国家,应6A保险丝(F1),并在所有情况下慢熔断保险丝是因为变压器的浪涌电流。   供应项目04一样,电源电压可以预期要高于在空载时引述,并在满负荷。这完全是正常的,是由于变压器的监管 。关于这一主题的详细信息,请参阅项目4。在某些情况下,它不会有可能获得的额定功率,如果没有足够的额定变压器 。
  •   图3 - 双单声道电源   对于这两种用品,我建议一个300VA的变压器和35A桥整流器最佳调节。对于115V的国家,应6A保险丝(F1),并在所有情况下慢熔断保险丝是因为变压器的浪涌电流。   供应项目04一样,电源电压可以预期要高于在空载时引述,并在满负荷。这完全是正常的,是由于变压器的监管 。关于这一主题的详细信息,请参阅项目4。在某些情况下,它不会有可能获得的额定功率,如果没有足够的额定变压器 。 >>
  • 来源:www.hqew.com/tech/fangan/560669.html
  •   3.振荡电路   振荡电路由比较器IC3A,电阻R8、R9、R36.电容C3.二极管D3、D8等组成(如下图所示)。开机后,当CPU输出脉冲调宽信号经R36加到比较器IC3A的(5)脚时,(4)脚电压小于(5)脚电压,则IC3A(2)脚输出高电平,推动Q7、Q6输出驱动电压,IGBT管导通。同时.18V电压经R9、R8向电容C3充电,当C3上的电压大于IC3A的(5)脚电压时,(2)脚输出低电平.
  •   3.振荡电路   振荡电路由比较器IC3A,电阻R8、R9、R36.电容C3.二极管D3、D8等组成(如下图所示)。开机后,当CPU输出脉冲调宽信号经R36加到比较器IC3A的(5)脚时,(4)脚电压小于(5)脚电压,则IC3A(2)脚输出高电平,推动Q7、Q6输出驱动电压,IGBT管导通。同时.18V电压经R9、R8向电容C3充电,当C3上的电压大于IC3A的(5)脚电压时,(2)脚输出低电平. >>
  • 来源:www.neieo.com/article/2012-11-01/23116_2.html
  • 文章来源:未知 编辑:-1 时间:2015.11.11  图   1、读SM卡   读SM卡插座如图2所示,卡座的S25、S26为SM卡插入检测开关,S23、S24为SM卡写保护开关,S27、S28为SM卡座固定焊盘。SM卡供电控制,如图3所示,当插入SM卡后$25脚为低电平,SMCDN信号加到Q905的栅极,Q905导通,给SM卡供电。   2、读SD/MMC卡   SD与MMC卡共用同一个插槽,如图4所示,卡座的、11脚为SD/MMC插入检测开关;12、13为SD/MMC卡写保护开关。SD/MMC卡供
  • 文章来源:未知 编辑:-1 时间:2015.11.11 图   1、读SM卡   读SM卡插座如图2所示,卡座的S25、S26为SM卡插入检测开关,S23、S24为SM卡写保护开关,S27、S28为SM卡座固定焊盘。SM卡供电控制,如图3所示,当插入SM卡后$25脚为低电平,SMCDN信号加到Q905的栅极,Q905导通,给SM卡供电。   2、读SD/MMC卡   SD与MMC卡共用同一个插槽,如图4所示,卡座的、11脚为SD/MMC插入检测开关;12、13为SD/MMC卡写保护开关。SD/MMC卡供 >>
  • 来源:jd.daqiso.com/zx/2015111117390_2.html
  •   HX-OA1550nm系列掺铒光纤放大器适用于1550nm光纤传输系统中配合1550nm光发射机在前端对光信号作功率放大或在线路上作中继放大,极大的延长系统的传输距离或者密集的光点覆盖,广泛用于国内有线电视地市级连网,以及密集光点和电信系统中。
  •   HX-OA1550nm系列掺铒光纤放大器适用于1550nm光纤传输系统中配合1550nm光发射机在前端对光信号作功率放大或在线路上作中继放大,极大的延长系统的传输距离或者密集的光点覆盖,广泛用于国内有线电视地市级连网,以及密集光点和电信系统中。 >>
  • 来源:www.wf-haoxing.com/p0101.htm
  • 图2 全差分运算放大器电路图   本文采用的运算放大器第一级采用改进的折叠式共源共栅放大,与传统的折叠式共源共栅电路相比,由于相同条件下, P管的噪声小于N管的噪声,因此放大器的输入端N管差分对变为P管差分对。第二级采用单管共源级放大,这使放大器内部出现了一个高阻节点,从而引入了一个新的低频极点,这样做虽然牺牲了一定的带宽,并且需要进行频率补偿,但同时改进了开环增益和输出摆幅,这种折中有利于放大器性能的提高。可以得到运放的低频增益为:
  • 图2 全差分运算放大器电路图   本文采用的运算放大器第一级采用改进的折叠式共源共栅放大,与传统的折叠式共源共栅电路相比,由于相同条件下, P管的噪声小于N管的噪声,因此放大器的输入端N管差分对变为P管差分对。第二级采用单管共源级放大,这使放大器内部出现了一个高阻节点,从而引入了一个新的低频极点,这样做虽然牺牲了一定的带宽,并且需要进行频率补偿,但同时改进了开环增益和输出摆幅,这种折中有利于放大器性能的提高。可以得到运放的低频增益为: >>
  • 来源:www.dzsc.com/data/html/2011-2-14/88599.html
  • 原理:把被测量转换为电感量变化的一种装置。(基于电磁感应原理) 分类:(1)自感式 (a) 可变磁阻(b) 涡流式 (2)互感式差动变压器式  一.自感式 1、可变磁阻 构造原理见下图,由电工学线圈自感量L为 式中W线圈匝数 Rm磁路总磁阻[H-1](亨)经推导,可得到电感为  式中表明:自感 L 与气隙 成反比,与气隙导磁截面积 A0 成正比。当固定 A0 变化 时,L与 呈非线性关系,此时传感器灵敏度 S 为  从式中看出,灵敏度S与气隙长度平方成反比,越小,S 越高。如果S不是常数会出现
  • 原理:把被测量转换为电感量变化的一种装置。(基于电磁感应原理) 分类:(1)自感式 (a) 可变磁阻(b) 涡流式 (2)互感式差动变压器式 一.自感式 1、可变磁阻 构造原理见下图,由电工学线圈自感量L为 式中W线圈匝数 Rm磁路总磁阻[H-1](亨)经推导,可得到电感为 式中表明:自感 L 与气隙 成反比,与气隙导磁截面积 A0 成正比。当固定 A0 变化 时,L与 呈非线性关系,此时传感器灵敏度 S 为 从式中看出,灵敏度S与气隙长度平方成反比,越小,S 越高。如果S不是常数会出现 >>
  • 来源:dec3.jlu.edu.cn/webcourse/T000273/files/bjjx/bjjx3.3.html
  • 提高系统的信噪比(前放紧靠探测器,传输线短,分布电容Cs减小,提高了信噪比)2.减少外界干扰的相对影响(信号经前放初步放大.)3.合理布局,便于调节与使用(前放为非调节式,主放放大调节倍数、成形常数)4.实现阻抗转换和匹配(前放设计为高输入阻抗,低输出阻抗)
  • 提高系统的信噪比(前放紧靠探测器,传输线短,分布电容Cs减小,提高了信噪比)2.减少外界干扰的相对影响(信号经前放初步放大.)3.合理布局,便于调节与使用(前放为非调节式,主放放大调节倍数、成形常数)4.实现阻抗转换和匹配(前放设计为高输入阻抗,低输出阻抗) >>
  • 来源:www.c-ps.net/tech/201504/234484.html
  • 纯A类功放对供电部分要求较高   尽管其功率数值看上去并不高,但A类放大器的功耗和发热量是惊人的。真正优质的A类放大器,造价也是不菲,制造一台优质的纯A类功放需要不小的代价:成熟优秀的线路设计、性能优异的元器件和有充足的供电所以一个A类功放,必定有一个性能优异的电源变压器。
  • 纯A类功放对供电部分要求较高   尽管其功率数值看上去并不高,但A类放大器的功耗和发热量是惊人的。真正优质的A类放大器,造价也是不菲,制造一台优质的纯A类功放需要不小的代价:成熟优秀的线路设计、性能优异的元器件和有充足的供电所以一个A类功放,必定有一个性能优异的电源变压器。 >>
  • 来源:fashion.xinmin.cn/2011/05/23/10871667_3.html
  • 本例介绍的多功能充电器,采用开关电源电路和微处理器 (单片机)控制电路,具有过电流、过电压保护功能,可用于镍氢电池和埋离子电池的充电。 电路工作原理 该多功能充电器电路由电源开关S1、开关电源电路、控制电路、充电电路和放电电路组成,如图5-66所示。 开关电源电路由开关振荡集成电路ICl、场效应晶体管VF、电感器Ll、臣、开关变压器T、整流二极管VDl-VD3、三端稳压集成电路IC2和外围阻容元件组成。   控制电路由微处理器集成电路IC3、发光二极管VLl-VL3、控制按钮S2、石英晶振BC和外围阻容元
  • 本例介绍的多功能充电器,采用开关电源电路和微处理器 (单片机)控制电路,具有过电流、过电压保护功能,可用于镍氢电池和埋离子电池的充电。 电路工作原理 该多功能充电器电路由电源开关S1、开关电源电路、控制电路、充电电路和放电电路组成,如图5-66所示。 开关电源电路由开关振荡集成电路ICl、场效应晶体管VF、电感器Ll、臣、开关变压器T、整流二极管VDl-VD3、三端稳压集成电路IC2和外围阻容元件组成。   控制电路由微处理器集成电路IC3、发光二极管VLl-VL3、控制按钮S2、石英晶振BC和外围阻容元 >>
  • 来源:bbs.dzsc.com/space/viewspacepost.aspx?postid=3748
  • 图5-2 冰淇淋展示柜自动功率控制电路ADS仿真条件设置和仿真结果 设计说明 图5-1所示电路是通过检测输入到功放漏极电流的变化来改变栅极的偏置电压,通过改变增益来改变输出功率。第一级运放和外围器件共同组成一个差动积分放大运算电路,输出电压是运放正反向输入端电压的差值的比例积分,这一级的作用是把变化的电流信号转换为一个恒定输出的电压信号,其中,R38、R45分压后提供一个参考电压,R39、R44与C103组成积分电路,又与R37组成比例电路;第二级运算电路是差动放大运算电路,输出电压是两个输入电压的差值的
  • 图5-2 冰淇淋展示柜自动功率控制电路ADS仿真条件设置和仿真结果 设计说明 图5-1所示电路是通过检测输入到功放漏极电流的变化来改变栅极的偏置电压,通过改变增益来改变输出功率。第一级运放和外围器件共同组成一个差动积分放大运算电路,输出电压是运放正反向输入端电压的差值的比例积分,这一级的作用是把变化的电流信号转换为一个恒定输出的电压信号,其中,R38、R45分压后提供一个参考电压,R39、R44与C103组成积分电路,又与R37组成比例电路;第二级运算电路是差动放大运算电路,输出电压是两个输入电压的差值的 >>
  • 来源:www.dan-gao-gui.com/news/trends/384.html