• 图 1.6 升降压型典型电路结构 基本工作原理:当 Q1 导通时,接在 Vin 两端的 L 被充电,由于 VD 截止,所以 TON 期间,负载的电压和电流由 CO 供给。当开关管截止时,储存在 L 中的能量通过 VD 传送到负载和 CO ,因为 L 上消失的磁场颠倒了电感器电压的极性。 输出电压:  图 1.
  • 图 1.6 升降压型典型电路结构 基本工作原理:当 Q1 导通时,接在 Vin 两端的 L 被充电,由于 VD 截止,所以 TON 期间,负载的电压和电流由 CO 供给。当开关管截止时,储存在 L 中的能量通过 VD 传送到负载和 CO ,因为 L 上消失的磁场颠倒了电感器电压的极性。 输出电压: 图 1. >>
  • 来源:www.big-bit.com/news/252564.html
  • 图 1.6 升降压型典型电路结构 基本工作原理:当 Q1 导通时,接在 Vin 两端的 L 被充电,由于 VD 截止,所以 TON 期间,负载的电压和电流由 CO 供给。当开关管截止时,储存在 L 中的能量通过 VD 传送到负载和 CO ,因为 L 上消失的磁场颠倒了电感器电压的极性。 输出电压:  图 1.
  • 图 1.6 升降压型典型电路结构 基本工作原理:当 Q1 导通时,接在 Vin 两端的 L 被充电,由于 VD 截止,所以 TON 期间,负载的电压和电流由 CO 供给。当开关管截止时,储存在 L 中的能量通过 VD 传送到负载和 CO ,因为 L 上消失的磁场颠倒了电感器电压的极性。 输出电压: 图 1. >>
  • 来源:www.big-bit.com/news/252564.html
  • 1 引言 降压型集成开关电源控制器广泛应用于各类便携式设备中。 近年来,随着电池供电的便携式设备,如手机、MP3 播放器、PDA 等性能的提高和功能的日趋丰富,对于开关电源的效率提出了越来越高的要求。 为提高效率和减少片外元器件, 目前应用的Buck变换器通常集成了功率开关和同步整流开关。 同时, 为减小片外电感元件的尺寸以适应便携式设备的应用,开关频率往往设置为几兆甚至更高的数量级。 由此带来的问题是,当变换器工作在轻载条件下, 开关损耗就变成了主要的功率损耗。 而便携式设备恰恰常工作于待机状态即轻载工
  • 1 引言 降压型集成开关电源控制器广泛应用于各类便携式设备中。 近年来,随着电池供电的便携式设备,如手机、MP3 播放器、PDA 等性能的提高和功能的日趋丰富,对于开关电源的效率提出了越来越高的要求。 为提高效率和减少片外元器件, 目前应用的Buck变换器通常集成了功率开关和同步整流开关。 同时, 为减小片外电感元件的尺寸以适应便携式设备的应用,开关频率往往设置为几兆甚至更高的数量级。 由此带来的问题是,当变换器工作在轻载条件下, 开关损耗就变成了主要的功率损耗。 而便携式设备恰恰常工作于待机状态即轻载工 >>
  • 来源:smunchina.com/news/news-353.html
  • 各位 高手指点下, 本人用的LM5085做的buck降压电路,当负载较大时输出比较正常,为什么负载降低就会导致输出的电压电流也同样降低。此时的电流未达到最大限流值。 该芯片有稳压的作用,是电路的问题还是什么问题啊 望高手指点
  • 各位 高手指点下, 本人用的LM5085做的buck降压电路,当负载较大时输出比较正常,为什么负载降低就会导致输出的电压电流也同样降低。此时的电流未达到最大限流值。 该芯片有稳压的作用,是电路的问题还是什么问题啊 望高手指点 >>
  • 来源:bbs.21dianyuan.com/forum.php?mod=viewthread&tid=101477
  • 四个LDO是CLDO、阿尔多、高压SLDO(SLDO-H)和低压SLDO(SLDO-L)。SLDO代表睡眠模式LDO,CLDO代表数字核LDO。Buck变换器1.6~1.8V输出到MT7697的其他子系统。它可以在PFM模式或PWM模式下运行。通过外部板上LC滤波器(2.2uH电感器和10uF盖),输出低纹波。1.6~1.8V到Wi-Fi射频系统、蓝牙射频系统和CLDO。CLDO在Buck域之下,然后它输出1.
  • 四个LDO是CLDO、阿尔多、高压SLDO(SLDO-H)和低压SLDO(SLDO-L)。SLDO代表睡眠模式LDO,CLDO代表数字核LDO。Buck变换器1.6~1.8V输出到MT7697的其他子系统。它可以在PFM模式或PWM模式下运行。通过外部板上LC滤波器(2.2uH电感器和10uF盖),输出低纹波。1.6~1.8V到Wi-Fi射频系统、蓝牙射频系统和CLDO。CLDO在Buck域之下,然后它输出1. >>
  • 来源:www.openedv.com/thread-281792-1-1.html
  • ) 工作可提供高效率,从而只需要 440A 的静态电流。对于噪声敏感的应用,LTC7149 能够在强制连续模式下运行,提供了非常低的输出纹波。它还包括参考于地的时钟和 PGOOD 引脚,从而免除了增设电平移位器的需要。其他特点包括一个电源良好电压监视器、可编程导线压降补偿、外部同步能力和热保护功能。 LTC7149EUFD 采用 4mm x 5mm QFN-28 封装,LTC7149EFE 采用 28 引线耐热性能增强型 TSSOP 封装。工业级版本 LTC7149IUFD 和 LTC7149IFE 保证
  • ) 工作可提供高效率,从而只需要 440A 的静态电流。对于噪声敏感的应用,LTC7149 能够在强制连续模式下运行,提供了非常低的输出纹波。它还包括参考于地的时钟和 PGOOD 引脚,从而免除了增设电平移位器的需要。其他特点包括一个电源良好电压监视器、可编程导线压降补偿、外部同步能力和热保护功能。 LTC7149EUFD 采用 4mm x 5mm QFN-28 封装,LTC7149EFE 采用 28 引线耐热性能增强型 TSSOP 封装。工业级版本 LTC7149IUFD 和 LTC7149IFE 保证 >>
  • 来源:www.dldz360.com/%E7%94%A8%E4%BA%8E%E6%8F%90%E4%BE%9B%E8%B4%9F%E8%BE%93%E5%87%BA%E7%9A%84-60v%E3%80%814a-%E5%90%8C%E6%AD%A5%E9%99%8D%E5%8E%8B%E5%9E%8B%E7%A8%B3%E5%8E%8B%E5%99%A8/
  • 输出引脚要并联100W钽电容和l严F陶瓷电容。表2-7中瞬态响应是在di/dt=1Al卢,U,=48VDC,T,-25负载从0.5倍1一变到0.751_,再从0.75倍I一变到0.5倍匕条件下测试的,本系列产品只能作为仪器设备内部电源,不能作为台式独立电源使用,基本应用电路如图2-12所示
  • 输出引脚要并联100W钽电容和l严F陶瓷电容。表2-7中瞬态响应是在di/dt=1Al卢,U,=48VDC,T,-25负载从0.5倍1一变到0.751_,再从0.75倍I一变到0.5倍匕条件下测试的,本系列产品只能作为仪器设备内部电源,不能作为台式独立电源使用,基本应用电路如图2-12所示 >>
  • 来源:www.gwapower.com/wenzhang/178.html
  •   3)在SC4519接地脚的附近加 个过孔将功率电路接地层与控制信号电路接地层单点式的相连接。   图23是该电源PCB上层排版图。为了力便读者理解,功率接地层和控制信号接地层分别用不同颜色来表示。在这里输入插座被放置在PCB的上方,而输出插座被放置在PCB的下方.滤波电感(L1)被放在PCB左边并靠近功率接地层,而对于噪音较敏感的反馈补偿电路(R3,C4,C5)则被放存PCB右边并靠近控制信号接地层。D2非常靠近SC4519的脚3及脚4。图24是该电源PCB下层排版图。输入滤波电容(C3)被放置在P
  •   3)在SC4519接地脚的附近加 个过孔将功率电路接地层与控制信号电路接地层单点式的相连接。   图23是该电源PCB上层排版图。为了力便读者理解,功率接地层和控制信号接地层分别用不同颜色来表示。在这里输入插座被放置在PCB的上方,而输出插座被放置在PCB的下方.滤波电感(L1)被放在PCB左边并靠近功率接地层,而对于噪音较敏感的反馈补偿电路(R3,C4,C5)则被放存PCB右边并靠近控制信号接地层。D2非常靠近SC4519的脚3及脚4。图24是该电源PCB下层排版图。输入滤波电容(C3)被放置在P >>
  • 来源:www.wingot.cn/news/101.html
  • 1 引言 降压型集成开关电源控制器广泛应用于各类便携式设备中。 近年来,随着电池供电的便携式设备,如手机、MP3 播放器、PDA 等性能的提高和功能的日趋丰富,对于开关电源的效率提出了越来越高的要求。 为提高效率和减少片外元器件, 目前应用的Buck变换器通常集成了功率开关和同步整流开关。 同时, 为减小片外电感元件的尺寸以适应便携式设备的应用,开关频率往往设置为几兆甚至更高的数量级。 由此带来的问题是,当变换器工作在轻载条件下, 开关损耗就变成了主要的功率损耗。 而便携式设备恰恰常工作于待机状态即轻载工
  • 1 引言 降压型集成开关电源控制器广泛应用于各类便携式设备中。 近年来,随着电池供电的便携式设备,如手机、MP3 播放器、PDA 等性能的提高和功能的日趋丰富,对于开关电源的效率提出了越来越高的要求。 为提高效率和减少片外元器件, 目前应用的Buck变换器通常集成了功率开关和同步整流开关。 同时, 为减小片外电感元件的尺寸以适应便携式设备的应用,开关频率往往设置为几兆甚至更高的数量级。 由此带来的问题是,当变换器工作在轻载条件下, 开关损耗就变成了主要的功率损耗。 而便携式设备恰恰常工作于待机状态即轻载工 >>
  • 来源:www.smunchina.com/news/news-353.html
  • 近年来,DC/DC开关调整器的工作频率范围介于20kHz到几兆赫兹之间。虽然更高的开关频率成为业界共同追求的目标,但是工程师们却担心这会导致效率的大幅度降低。近期业界推出了第一颗频率高达8MHz的拥有低压差线性调整器(LDO)轻负载模式的降压调整器。与工作频率为1MHz的调整器相比,该解决方案的电感器体积缩小了超过90%,同时却保持出色的总体转换效率。 DC/DC开关调整器是在两个直流电压之间进行转换的有效手段。例如,锂离子电池的放电电压在4.
  • 近年来,DC/DC开关调整器的工作频率范围介于20kHz到几兆赫兹之间。虽然更高的开关频率成为业界共同追求的目标,但是工程师们却担心这会导致效率的大幅度降低。近期业界推出了第一颗频率高达8MHz的拥有低压差线性调整器(LDO)轻负载模式的降压调整器。与工作频率为1MHz的调整器相比,该解决方案的电感器体积缩小了超过90%,同时却保持出色的总体转换效率。 DC/DC开关调整器是在两个直流电压之间进行转换的有效手段。例如,锂离子电池的放电电压在4. >>
  • 来源:www.ic37.com/htm_news/2008-1/4540_573736.htm
  • MC34063,4V~18V输入,5V, 200mA-300mA左右输出,按照应用手册AN920/D图18设计,效率只有50%,芯片和电感都比较热。目前电感用的是50KHz,220uH(怀疑较大),开关管BC807,请教DC/DC 高手给与建议:
  • MC34063,4V~18V输入,5V, 200mA-300mA左右输出,按照应用手册AN920/D图18设计,效率只有50%,芯片和电感都比较热。目前电感用的是50KHz,220uH(怀疑较大),开关管BC807,请教DC/DC 高手给与建议: >>
  • 来源:bbs.21dianyuan.com/forum.php?mod=viewthread&tid=159635
  •   由于斩波器具有调压、调磁等作用,因此它的应用领域之一是直流电机的调速。直流电机的转速取决于电枢电压及磁场的大小,通过斩波器的调压作用,可以调节电机的电枢电压,达到调速的目的。另外,通过斩波器的调磁作用,可以调节电机的磁场及励磁电流,也可以达到调速的目的。直流电机调速在地铁、城市无轨电车、电动汽车等运输车辆上得到了广泛的应用。   斩波器的另一应用领域是直流供电电源。在各种应用场合中,不同用电设备所需要的直流供电电压的等级不同,采用斩波器可以将单一的、不稳定的直流输入电压变换成负载所需要的稳定的、不同电
  •   由于斩波器具有调压、调磁等作用,因此它的应用领域之一是直流电机的调速。直流电机的转速取决于电枢电压及磁场的大小,通过斩波器的调压作用,可以调节电机的电枢电压,达到调速的目的。另外,通过斩波器的调磁作用,可以调节电机的磁场及励磁电流,也可以达到调速的目的。直流电机调速在地铁、城市无轨电车、电动汽车等运输车辆上得到了广泛的应用。   斩波器的另一应用领域是直流供电电源。在各种应用场合中,不同用电设备所需要的直流供电电压的等级不同,采用斩波器可以将单一的、不稳定的直流输入电压变换成负载所需要的稳定的、不同电 >>
  • 来源:en.vfe.cc/NewsDetail-1652.aspx
  • 大家好,我现在想做一个DC-DC输出可调电源,打算用LM2576-ADJ。如图:  输出是调节R2电位器,但是我想用两个按键控制,分别为K1和K2,调节K1电压降低,调节K2电压升高。因不懂单片机,请教各位是否有别的方式可以达到目的,谢谢!
  • 大家好,我现在想做一个DC-DC输出可调电源,打算用LM2576-ADJ。如图: 输出是调节R2电位器,但是我想用两个按键控制,分别为K1和K2,调节K1电压降低,调节K2电压升高。因不懂单片机,请教各位是否有别的方式可以达到目的,谢谢! >>
  • 来源:bbs.21dianyuan.com/thread-81712-1-450.html
  • 集成运放出现阻塞现象时,放大电路将失去放大能力,相当于信号被运放阻断一样。例如电压跟随器就常发生阻塞现象,这是因为跟随器的输入、输出电压幅度相等,其输入信号的幅度一般较大(跟随器作为输出级时),如果运放输入级偏置电压不大于输入信号的峰一峰值,则输入级在输入信号峰值时会变为饱和状态,当出现饱和时,输入、输出电压变为同相,负反馈就变为正反馈。显然,正反馈将导致输入级一直处于饱和状态,输入信号将不能正常输出,这就造成了阻塞现象。 为了进一步说明阻塞现象的成因,举例如下:图(a)为晶体管输入型运放的输入级电路,
  • 集成运放出现阻塞现象时,放大电路将失去放大能力,相当于信号被运放阻断一样。例如电压跟随器就常发生阻塞现象,这是因为跟随器的输入、输出电压幅度相等,其输入信号的幅度一般较大(跟随器作为输出级时),如果运放输入级偏置电压不大于输入信号的峰一峰值,则输入级在输入信号峰值时会变为饱和状态,当出现饱和时,输入、输出电压变为同相,负反馈就变为正反馈。显然,正反馈将导致输入级一直处于饱和状态,输入信号将不能正常输出,这就造成了阻塞现象。 为了进一步说明阻塞现象的成因,举例如下:图(a)为晶体管输入型运放的输入级电路, >>
  • 来源:www.eechina.com/forum.php?mod=viewthread&tid=56172&mobile=1
  • 图7 变频一次主回路原理图 4.2、主回路控制方式和功率单元控制 相位检测电源取自隔离变压器的二次,隔离变压器的一次电源取自PT信号。当相位检测电源拔掉后,单元构成两象限运行模式,可按照正常变频器使用。插入电源端子后为四象限运行模式,功率单元交流输入侧串联有并网交流电抗器,也能减少对电网侧的冲击。控制回路分为整流部分控制驱动板和逆变部分控制驱动板,分别对应控制电源1和控制电源2。 单元控制回路以可编程逻辑器件为核心,主控回路为以双数字信号处理器(DSP)和超大规模集成电路可编程逻辑控制器件(FPGA)为
  • 图7 变频一次主回路原理图 4.2、主回路控制方式和功率单元控制 相位检测电源取自隔离变压器的二次,隔离变压器的一次电源取自PT信号。当相位检测电源拔掉后,单元构成两象限运行模式,可按照正常变频器使用。插入电源端子后为四象限运行模式,功率单元交流输入侧串联有并网交流电抗器,也能减少对电网侧的冲击。控制回路分为整流部分控制驱动板和逆变部分控制驱动板,分别对应控制电源1和控制电源2。 单元控制回路以可编程逻辑器件为核心,主控回路为以双数字信号处理器(DSP)和超大规模集成电路可编程逻辑控制器件(FPGA)为 >>
  • 来源:news.ca168.com/201806/99429.html
  • 对于mos管子宽长比做的越大越好,这样导通电阻会比较小,但是对应的mos管子的面积也会增大,对应的非交叠时钟的驱动能力也要增强(即是驱动的反相器驱动能力要做大)。其实一般情况下,flying cap的等效电阻一般是占主导,一般是k级别,导通电阻都会比较小(一般是级别)
  • 对于mos管子宽长比做的越大越好,这样导通电阻会比较小,但是对应的mos管子的面积也会增大,对应的非交叠时钟的驱动能力也要增强(即是驱动的反相器驱动能力要做大)。其实一般情况下,flying cap的等效电阻一般是占主导,一般是k级别,导通电阻都会比较小(一般是级别) >>
  • 来源:bbs.eetop.cn/thread-479157-2-1.html
  • ,看来对比较器有疑点。      加电测量LM358的各脚电压:电源端脚电压是11.74V,说明辅助电源工作基本正常;比较器同相输入端脚电压为0.14V高于反相输入端脚电压(V),脚输出高电平( 10.19V)。LM358内部的另一组比较器各脚电压,也符合比较器特性,说明LM358基本正常。      冷静考虑,既然比较器正常,那么充电器在给电池充电时,脚不应该输出高电平,也就是说脚电位理应低于脚,才能
  • ,看来对比较器有疑点。      加电测量LM358的各脚电压:电源端脚电压是11.74V,说明辅助电源工作基本正常;比较器同相输入端脚电压为0.14V高于反相输入端脚电压(V),脚输出高电平( 10.19V)。LM358内部的另一组比较器各脚电压,也符合比较器特性,说明LM358基本正常。      冷静考虑,既然比较器正常,那么充电器在给电池充电时,脚不应该输出高电平,也就是说脚电位理应低于脚,才能 >>
  • 来源:www.nnjuren.cn/html/ShouJiBan/s499/2015-10/1376993.htm