• 2.5.4 定点运算器的基本结构      运算器包括ALU阵列乘除器寄存器多路开关三态缓冲器数据总线等逻辑部件。      运算器的设计,主要是围绕ALU和寄存器同数据总线之间如何传送操作数和运算结果进行的。      在决定方案时,需要考虑数据传送的方便性和操作速度,在微型机和单片机中还要考虑在硅片上制作总线的工艺。 计算机的运算器大体有如下三种结构形式:
  • 2.5.4 定点运算器的基本结构      运算器包括ALU阵列乘除器寄存器多路开关三态缓冲器数据总线等逻辑部件。      运算器的设计,主要是围绕ALU和寄存器同数据总线之间如何传送操作数和运算结果进行的。      在决定方案时,需要考虑数据传送的方便性和操作速度,在微型机和单片机中还要考虑在硅片上制作总线的工艺。 计算机的运算器大体有如下三种结构形式: >>
  • 来源:www.educity.cn/zk/zcyl/201004131015231639.htm
  •   用单片机控制8位LED灯的流水点亮及其PROTEUS仿真   摘要:LED灯的流水控制可以由多种方式实现,这里选用80c51系列单片机作为CPU,采用函数型指针的方式编程,用Proteus进行电路图绘制和仿真,用keil进行编译和虚拟写入,得到了理想的仿真效果。   Abstract: LED lights from a variety of water control can be achieved, 80c51 chosen here as a series of single-chip CPU,
  •   用单片机控制8位LED灯的流水点亮及其PROTEUS仿真   摘要:LED灯的流水控制可以由多种方式实现,这里选用80c51系列单片机作为CPU,采用函数型指针的方式编程,用Proteus进行电路图绘制和仿真,用keil进行编译和虚拟写入,得到了理想的仿真效果。   Abstract: LED lights from a variety of water control can be achieved, 80c51 chosen here as a series of single-chip CPU, >>
  • 来源:bbs.ofweek.com/forum.php?mod=viewthread&tid=61661&mobile=1
  • 线16:连接到PVD输出。PVD(Programmable Votage Detector),即可编程电压监测器。作用是监视供电电压,在供电电压下降到给定的阀值以下时,产生一个中断,通知软件做紧急处理。当供电电压又恢复到给定的阀值以上时,也会产生一个中断,通知软件供电恢复。
  • 线16:连接到PVD输出。PVD(Programmable Votage Detector),即可编程电压监测器。作用是监视供电电压,在供电电压下降到给定的阀值以下时,产生一个中断,通知软件做紧急处理。当供电电压又恢复到给定的阀值以上时,也会产生一个中断,通知软件供电恢复。 >>
  • 来源:www.stm8.cn/news/STM32File/1129.html
  • 步进电机内部结构如图1所示:  如何能使它转起来呢?一搬有两种方法: 1.单相驱动:一相一相驱动,线圈加高电平顺序是:黄蓝红橙;或是:橙红蓝黄。其中黑白接地。 2.双相驱动:当要求电动机输出大功率时可以两相两相同时驱动,线圈加高电平顺序为:黄+红蓝+橙;或是:橙+蓝红+黄。 了解步进电机的驱动方式后、我想到了用移位寄存器产生移位脉冲来让步进电机动起来。电路如图2。  图2是通过拨码开关控制74LS194使Q0、Q1、Q2、Q3产生上面提过的两种移位脉冲来控制U1(光电耦合器
  • 步进电机内部结构如图1所示: 如何能使它转起来呢?一搬有两种方法: 1.单相驱动:一相一相驱动,线圈加高电平顺序是:黄蓝红橙;或是:橙红蓝黄。其中黑白接地。 2.双相驱动:当要求电动机输出大功率时可以两相两相同时驱动,线圈加高电平顺序为:黄+红蓝+橙;或是:橙+蓝红+黄。 了解步进电机的驱动方式后、我想到了用移位寄存器产生移位脉冲来让步进电机动起来。电路如图2。 图2是通过拨码开关控制74LS194使Q0、Q1、Q2、Q3产生上面提过的两种移位脉冲来控制U1(光电耦合器 >>
  • 来源:www.zxskj.cn/dianzi/zidongkongzhidianlu/1316.html
  • 在汇编语言中寄存器R0~R13为保存数据或地址值的通用寄存器。它们是完全通用的寄存器,不会被体系结构作为特殊用途,并且可用于任何使用通用寄存器的指令。其中R0~R7为未分组的寄存器,也就是说对于任何处理器模式,这些寄存器都对应于相同的32位物理寄存器。寄存器R8~R14为分组寄存器。它们所对应的物理寄存器取决于当前的处理器模式,几乎所有允许使用通用寄存器的指令都允许使用分组寄存器。寄存器R8~R12有两个分组的物理寄存器。一个用于除FIQ模式之外的所有寄存器模式,另一个用于FIQ模式。这样在发生FIQ中断
  • 在汇编语言中寄存器R0~R13为保存数据或地址值的通用寄存器。它们是完全通用的寄存器,不会被体系结构作为特殊用途,并且可用于任何使用通用寄存器的指令。其中R0~R7为未分组的寄存器,也就是说对于任何处理器模式,这些寄存器都对应于相同的32位物理寄存器。寄存器R8~R14为分组寄存器。它们所对应的物理寄存器取决于当前的处理器模式,几乎所有允许使用通用寄存器的指令都允许使用分组寄存器。寄存器R8~R12有两个分组的物理寄存器。一个用于除FIQ模式之外的所有寄存器模式,另一个用于FIQ模式。这样在发生FIQ中断 >>
  • 来源:www.61ic.com/code/viewthread.php?tid=22166
  • 看门狗定时器WDT是一片内自振荡式RC振荡器,即使外部振荡器被关闭(即工作在休眠模式),WDT也一直在计数。当WDT被使能,无论是在工作模式或休眠模式,若WDT超时,都将导致单片机复位,因此WDT主要用来防止单片机系统失控,一般WDT基本溢出周期约18ms(PAB=0),最大溢出周期约2.
  • 看门狗定时器WDT是一片内自振荡式RC振荡器,即使外部振荡器被关闭(即工作在休眠模式),WDT也一直在计数。当WDT被使能,无论是在工作模式或休眠模式,若WDT超时,都将导致单片机复位,因此WDT主要用来防止单片机系统失控,一般WDT基本溢出周期约18ms(PAB=0),最大溢出周期约2. >>
  • 来源:www.zsgbailin.com/emjg2.htm
  • 备注: :Modbus设备指令支持下列Modbus地址: 00001至09999是离散输入(光耦) 10001至19999是输入寄存器(模拟量输入) 20001至29999是保持寄存器 采用5位码格式,第一个字符决定寄存器类型,其余4个字符代表地址。地址1从0开始,为16进制数。 :波特率数值对应表
  • 备注: :Modbus设备指令支持下列Modbus地址: 00001至09999是离散输入(光耦) 10001至19999是输入寄存器(模拟量输入) 20001至29999是保持寄存器 采用5位码格式,第一个字符决定寄存器类型,其余4个字符代表地址。地址1从0开始,为16进制数。 :波特率数值对应表 >>
  • 来源:www.cntrades.com/b2b/juying/sell/itemid-24178767.html
  • 摘要:本文主要介绍了智能图像传感器DVT的在线检测,并且对检测结果获取、传输方面技术进行了说明,以及智能传感器和外围设备之间通信的研究。表明其获取结果多样性。本文举例应用智能传感器DVT630对工件小孔定位、半径测量,实验表明此传感器灵活性高,检测结果准确,提高工业流水生长线上的检测效率。 1、引言 DVT机器视觉系统,是能够代替人眼的计算机系统,是为适应图像、字符自动化生产线的检测和监控而研究开发的。 在高速、批量、连续的自动化生产过程中,往往需要视觉系统进行OCR字符及各种号码识别、质量检查、色彩与几
  • 摘要:本文主要介绍了智能图像传感器DVT的在线检测,并且对检测结果获取、传输方面技术进行了说明,以及智能传感器和外围设备之间通信的研究。表明其获取结果多样性。本文举例应用智能传感器DVT630对工件小孔定位、半径测量,实验表明此传感器灵活性高,检测结果准确,提高工业流水生长线上的检测效率。 1、引言 DVT机器视觉系统,是能够代替人眼的计算机系统,是为适应图像、字符自动化生产线的检测和监控而研究开发的。 在高速、批量、连续的自动化生产过程中,往往需要视觉系统进行OCR字符及各种号码识别、质量检查、色彩与几 >>
  • 来源:www.dt365.com/Article/HTML/20120705213327_9469.html
  • 可能你已经注意到了,表 5-2 的 TCON 最后标注了“可位寻址”,而表 5-4 的 TMOD 标注的是“不可位寻址”。意思就是说:比如 TCON 有一个位叫 TR1,我们可以在程序中直接进行 TR1 = 1 这样的操作。但对 TMOD 里的位比如(T1)M1 = 1 这样的操作就是错误的。我们要操作就必须一次操作这整个字节,也就是必须一次性对 TMOD 所有位操作,不能对其中某一位单独进行操作,那么我们能不能只修改其中的一位而不影响其它位的值呢?当然可以
  • 可能你已经注意到了,表 5-2 的 TCON 最后标注了“可位寻址”,而表 5-4 的 TMOD 标注的是“不可位寻址”。意思就是说:比如 TCON 有一个位叫 TR1,我们可以在程序中直接进行 TR1 = 1 这样的操作。但对 TMOD 里的位比如(T1)M1 = 1 这样的操作就是错误的。我们要操作就必须一次操作这整个字节,也就是必须一次性对 TMOD 所有位操作,不能对其中某一位单独进行操作,那么我们能不能只修改其中的一位而不影响其它位的值呢?当然可以 >>
  • 来源:c.biancheng.net/cpp/html/1878.html
  • DM8168的PWM是通过TIMx_OUT引脚输出的,需要对Timer进行配置才能有波形输出。 对Timer的时钟进行配置,确保Timer能正常工作。 设置寄存器之前关闭Timer。 设置定时溢出后的装载值。 设置比较值,该值决定PWM占空比。 设置internal counter值。 启动Timer。 启动DM8168过后,停在U-boot界面,使用U-boot的内存读写工具来进行调试。 一、修改CM_ALWON_TIMER_4_CLKC
  • DM8168的PWM是通过TIMx_OUT引脚输出的,需要对Timer进行配置才能有波形输出。 对Timer的时钟进行配置,确保Timer能正常工作。 设置寄存器之前关闭Timer。 设置定时溢出后的装载值。 设置比较值,该值决定PWM占空比。 设置internal counter值。 启动Timer。 启动DM8168过后,停在U-boot界面,使用U-boot的内存读写工具来进行调试。 一、修改CM_ALWON_TIMER_4_CLKC >>
  • 来源:www.lxway.com/115011806.htm
  • DM8168的PWM是通过TIMx_OUT引脚输出的,需要对Timer进行配置才能有波形输出。 对Timer的时钟进行配置,确保Timer能正常工作。 设置寄存器之前关闭Timer。 设置定时溢出后的装载值。 设置比较值,该值决定PWM占空比。 设置internal counter值。 启动Timer。 启动DM8168过后,停在U-boot界面,使用U-boot的内存读写工具来进行调试。 一、修改CM_ALWON_TIMER_4_CLKCTRL,该
  • DM8168的PWM是通过TIMx_OUT引脚输出的,需要对Timer进行配置才能有波形输出。 对Timer的时钟进行配置,确保Timer能正常工作。 设置寄存器之前关闭Timer。 设置定时溢出后的装载值。 设置比较值,该值决定PWM占空比。 设置internal counter值。 启动Timer。 启动DM8168过后,停在U-boot界面,使用U-boot的内存读写工具来进行调试。 一、修改CM_ALWON_TIMER_4_CLKCTRL,该 >>
  • 来源:www.jeepshoe.org/454284201.htm
  • 我们选择的是(TRG=10 & PT=1)倒数第二个选项,只要设置了一个装载值和比较值就可以确定占空比和周期。 设置装载值: TI8168_EVM#mw.l 0x48044040 0xffffffe0 vcD4KPHA+y8Shosno1sOxyL3PJiMyMDU0MDujujwvcD4KPHA+VEk4MTY4X0VWTSNtdy5sIDB4NDgwNDQwNGMgMHhmZmZmZmZmMCA8YnI+CjwvcD4KPHA+PGltZyBzcmM
  • 我们选择的是(TRG=10 & PT=1)倒数第二个选项,只要设置了一个装载值和比较值就可以确定占空比和周期。 设置装载值: TI8168_EVM#mw.l 0x48044040 0xffffffe0 vcD4KPHA+y8Shosno1sOxyL3PJiMyMDU0MDujujwvcD4KPHA+VEk4MTY4X0VWTSNtdy5sIDB4NDgwNDQwNGMgMHhmZmZmZmZmMCA8YnI+CjwvcD4KPHA+PGltZyBzcmM >>
  • 来源:www.41443.com/HTML/Java/20150320/358056.html
  • 4.4.2 移位型计数器 移位寄存器也可以构成计数器,称为移位型计数器。它有两种结构:环形计数器和扭环形计数器。 图 4-4-3 环形计数器和扭环形计数器 4.4.3 串-并变换器及并-串变换器 串-并变换器是把若干位串行二进制编码变成并行二进制编码的电路。并-串变换器则刚刚相反。  图 4-4-4 8位串-并变换器  图 4-4-5 8位并-串变换器 4.
  • 4.4.2 移位型计数器 移位寄存器也可以构成计数器,称为移位型计数器。它有两种结构:环形计数器和扭环形计数器。 图 4-4-3 环形计数器和扭环形计数器 4.4.3 串-并变换器及并-串变换器 串-并变换器是把若干位串行二进制编码变成并行二进制编码的电路。并-串变换器则刚刚相反。 图 4-4-4 8位串-并变换器 图 4-4-5 8位并-串变换器 4. >>
  • 来源:gc.nuaa.edu.cn/digital/kejian/ch4/4-4.htm
  • 1、时序图 2、控制字 3、寄存器地址与RAM地址 4、代码 时序图  控制字  寄存器与RAM  代码: #include <reg52.h> #include <intrins.h> sbit dm = P2^2; //段码 sbit wm = P2^3; //位码 sbit st = P1^6; //使能(RST) sbit cl = P1^4; //时钟管脚(CLK) sbit da = P1^5; //i/o管脚(数据管脚)(i/o) /*这两个函数就这时钟芯片的精髓*/
  • 1、时序图 2、控制字 3、寄存器地址与RAM地址 4、代码 时序图 控制字 寄存器与RAM 代码: #include <reg52.h> #include <intrins.h> sbit dm = P2^2; //段码 sbit wm = P2^3; //位码 sbit st = P1^6; //使能(RST) sbit cl = P1^4; //时钟管脚(CLK) sbit da = P1^5; //i/o管脚(数据管脚)(i/o) /*这两个函数就这时钟芯片的精髓*/ >>
  • 来源:www.51hei.com/bbs/dpj-30428-1.html
  • Nios嵌入式处理器系统由Nios嵌入式处理器、DMA控制器、数据存储区SDRAM、程序存储区F1ash和Avalon总线构成。其中DMA控制器用于实现两个存储器之间,或者存储器和外设之间,或者是两个外设之间的直接数据传输。DMA模块用于连接支持流模式传输的外设,并允许定长或变长的数据传输,而不需要CPU的干涉。在Ultra DMA数据传输的过程中,可以一次性传输最多256个扇区的数据,所以在系统中使用DMA控制器可以方便地在硬盘与系统中各种支持流传输模式的设备之间建立直通连接,提高系统的数据传输效率。
  • Nios嵌入式处理器系统由Nios嵌入式处理器、DMA控制器、数据存储区SDRAM、程序存储区F1ash和Avalon总线构成。其中DMA控制器用于实现两个存储器之间,或者存储器和外设之间,或者是两个外设之间的直接数据传输。DMA模块用于连接支持流模式传输的外设,并允许定长或变长的数据传输,而不需要CPU的干涉。在Ultra DMA数据传输的过程中,可以一次性传输最多256个扇区的数据,所以在系统中使用DMA控制器可以方便地在硬盘与系统中各种支持流传输模式的设备之间建立直通连接,提高系统的数据传输效率。 >>
  • 来源:www.mcu123.com/news/Article/ARMsource/ARM/200610/2366.html
  • C串行总线标准,这里不再赘述。而S5920外加总线信号分为输入(in)、输出(out)和双向三态(t/s)三种。下面对S5920的外加总线引脚作一分类描述: 3.1 信箱通道引脚   MDMODE:(in),信箱通道数据模式选择端。高电平时,MD[70]信号恒为输入;低电平时,由LOAD#信号控制MD[70]为输入或输出。 LOAD#:(in),高电平时,MD[70]为输入,下一个时钟ADCLK的上升沿将数据锁入到外加总线输出信箱寄存器的第三字节;当低电平且MDMODE为0时,MD[70]上显示PC
  • C串行总线标准,这里不再赘述。而S5920外加总线信号分为输入(in)、输出(out)和双向三态(t/s)三种。下面对S5920的外加总线引脚作一分类描述: 3.1 信箱通道引脚   MDMODE:(in),信箱通道数据模式选择端。高电平时,MD[70]信号恒为输入;低电平时,由LOAD#信号控制MD[70]为输入或输出。 LOAD#:(in),高电平时,MD[70]为输入,下一个时钟ADCLK的上升沿将数据锁入到外加总线输出信箱寄存器的第三字节;当低电平且MDMODE为0时,MD[70]上显示PC >>
  • 来源:lunwen.freekaoyan.com/ligonglunwen/dianzi/20080216/120313686576916.shtml
  • 所以,发送和接收寄存器可使用同一地址,编写验证程序(发送和接收是独立空间):读取一个数(1)->发送一个数(2)->再读取得1则是独立空间 不知道STM32串口寄存器和C51串口寄存器是否同样道理 STM32串口寄存器:STM32的发送与接收是通过数据寄存器USART_DR来实现的,这是一个双寄存器,包含了TDR和RDR,对它读操作,读取的是RDR寄存器的值,对它的写操作,实际上是写到TDR寄存器的;当向该寄存器写数据的时候,串口就会自动发送,当收到收据的时候,也是存在该寄存器内。
  • 所以,发送和接收寄存器可使用同一地址,编写验证程序(发送和接收是独立空间):读取一个数(1)->发送一个数(2)->再读取得1则是独立空间 不知道STM32串口寄存器和C51串口寄存器是否同样道理 STM32串口寄存器:STM32的发送与接收是通过数据寄存器USART_DR来实现的,这是一个双寄存器,包含了TDR和RDR,对它读操作,读取的是RDR寄存器的值,对它的写操作,实际上是写到TDR寄存器的;当向该寄存器写数据的时候,串口就会自动发送,当收到收据的时候,也是存在该寄存器内。 >>
  • 来源:www.cnblogs.com/cj2014/p/3969951.html