• 低成本常用包类型一般pupose 描述 TP321是具有低失调,高频响应,低功耗,低电源电压和轨至轨输入和输出的通用单CMOS CMOS运算放大器。它集成了3PEAK的专利和专利设计技术,以在所有微功率CMOS放大器之间以低成本实现最佳的同类性能。 TP321单位增益稳定,具有恒定的1MHz增益带宽积,1V /s转换速率,每个放大器仅消耗45A的电源电流。轨至轨输入和输出特性允许将完整的电源电压用于信号范围。 这种特性的组合使得TP321在RRIO CMOS运算放大器中具有卓越的性价比。 TP321是
  • 低成本常用包类型一般pupose 描述 TP321是具有低失调,高频响应,低功耗,低电源电压和轨至轨输入和输出的通用单CMOS CMOS运算放大器。它集成了3PEAK的专利和专利设计技术,以在所有微功率CMOS放大器之间以低成本实现最佳的同类性能。 TP321单位增益稳定,具有恒定的1MHz增益带宽积,1V /s转换速率,每个放大器仅消耗45A的电源电流。轨至轨输入和输出特性允许将完整的电源电压用于信号范围。 这种特性的组合使得TP321在RRIO CMOS运算放大器中具有卓越的性价比。 TP321是 >>
  • 来源:www.cecport.com/3333/1000797563.shtml
  • DAC I / V放大器和低通滤波器应用中的TP127x 产品概述 TP1271 / TP1272 / TP1274系列是精密EMI硬化,高电压CMOS运算放大器,在900MHz下的EMIRR为84dB。 TP127X系列运放可以在1.35V至18V电源下工作,具有出色的性能,它们提供非常低的失调电压和漂移,低偏置电流,高共模抑制和高电源抑制。 TP127X是单位增益稳定与100pF容性负载宽7MHz带宽,20V /s高压摆率,这使得该设备适合I / V转换器。 这些运放是各种应用的理想选择,包括过
  • DAC I / V放大器和低通滤波器应用中的TP127x 产品概述 TP1271 / TP1272 / TP1274系列是精密EMI硬化,高电压CMOS运算放大器,在900MHz下的EMIRR为84dB。 TP127X系列运放可以在1.35V至18V电源下工作,具有出色的性能,它们提供非常低的失调电压和漂移,低偏置电流,高共模抑制和高电源抑制。 TP127X是单位增益稳定与100pF容性负载宽7MHz带宽,20V /s高压摆率,这使得该设备适合I / V转换器。 这些运放是各种应用的理想选择,包括过 >>
  • 来源:www.cecport.com/3333/1000796664.shtml
  • 电池电流检测应用 产品概述 TP212x是超低功耗精密CMOS运算放大器,每个放大器的最大电源电流为800nA,具有超低的典型输入偏置电流1fA。模拟调整和校准程序将输入失调电压降至1.5mV以下,精密温度补偿技术使失调电压温度漂移在0.5V/C,这允许在具有高增益的系统中使用TP212x,而不会产生过大的输出失调误差。 TP212x具有单位增益稳定性,具有1,000nF电容性负载,恒定的18kHz GBWP,10mV /s转换速率,使其适用于低频应用,例如电池电流监测和传感器调节。 TP212x可
  • 电池电流检测应用 产品概述 TP212x是超低功耗精密CMOS运算放大器,每个放大器的最大电源电流为800nA,具有超低的典型输入偏置电流1fA。模拟调整和校准程序将输入失调电压降至1.5mV以下,精密温度补偿技术使失调电压温度漂移在0.5V/C,这允许在具有高增益的系统中使用TP212x,而不会产生过大的输出失调误差。 TP212x具有单位增益稳定性,具有1,000nF电容性负载,恒定的18kHz GBWP,10mV /s转换速率,使其适用于低频应用,例如电池电流监测和传感器调节。 TP212x可 >>
  • 来源:www.cecport.com/3333/1000796690.shtml
  • LTC2063是一款超低功耗斩波稳定运算放大器,其最大电源电流为2μA,特别适合电池供电应用。失调电压小于10 μV,因此它可以测量非常小的压降而不会丧失精度。图2显示LTC2063配置用来放大10 mΩ检测电阻上的电压并进行电平转换。选择适当的增益,使检测电阻的±10 mV满量程输入(对应于±1 A电流)映射到接近输出端的满量程范围,其以1.
  • LTC2063是一款超低功耗斩波稳定运算放大器,其最大电源电流为2μA,特别适合电池供电应用。失调电压小于10 μV,因此它可以测量非常小的压降而不会丧失精度。图2显示LTC2063配置用来放大10 mΩ检测电阻上的电压并进行电平转换。选择适当的增益,使检测电阻的±10 mV满量程输入(对应于±1 A电流)映射到接近输出端的满量程范围,其以1. >>
  • 来源:www.analog.com/cn/analog-dialogue/articles/wireless-current-sense-circuit-floats-with-sense-resistor.html
  • 集成运算放大器(以后简称集成运放)是一种高电压增益、高输入电阻和低输出电阻的多级直接耦合放大电路。它的类型很多,电路也不一样,但结构具有共同之处,图1所示为集成运放的内部电路组成框图。图中输入级一般是由BJT、JFET或MOSFET组成的差动放大电路,利用它的对称特性可以提高整个电路的共模抑制比和其他方面的性能,它的两个输人端构成整个电路的反相输入端和同相输入端。电压放大级的主要作用是提高电压增益,它可由一级或多级放大电路组成。输出级般由电压跟随器或互补电压跟随器构成,以降低输出电阻,提高带负载能力。偏置
  • 集成运算放大器(以后简称集成运放)是一种高电压增益、高输入电阻和低输出电阻的多级直接耦合放大电路。它的类型很多,电路也不一样,但结构具有共同之处,图1所示为集成运放的内部电路组成框图。图中输入级一般是由BJT、JFET或MOSFET组成的差动放大电路,利用它的对称特性可以提高整个电路的共模抑制比和其他方面的性能,它的两个输人端构成整个电路的反相输入端和同相输入端。电压放大级的主要作用是提高电压增益,它可由一级或多级放大电路组成。输出级般由电压跟随器或互补电压跟随器构成,以降低输出电阻,提高带负载能力。偏置 >>
  • 来源:my.bj51.org/article/id/64537
  • 图1. 基本运算放大器测量电路 图1所示电路能够将大部分测量误差降至最低,支持精确测量大量直流和少量交流参数。附加的辅助运算放大器无需具有比待测运算放大器更好的性能,其直流开环增益最好能达到106或更高。如果待测器件(DUT)的失调电压可能超过几mV,则辅助运放应采用15 V电源供电(如果DUT的输入失调电压可能超过10 mV,则需要减小99.
  • 图1. 基本运算放大器测量电路 图1所示电路能够将大部分测量误差降至最低,支持精确测量大量直流和少量交流参数。附加的辅助运算放大器无需具有比待测运算放大器更好的性能,其直流开环增益最好能达到106或更高。如果待测器件(DUT)的失调电压可能超过几mV,则辅助运放应采用15 V电源供电(如果DUT的输入失调电压可能超过10 mV,则需要减小99. >>
  • 来源:forum.eepw.com.cn/thread/296235/1
  •      2.3滤波电路      由于数模转换器AD9708输出的信号附加有大量的高频噪声,进行必要的平滑滤波处理后才能得到所需信号,选用由运算放大器LM318及必要的元件组成二阶压控电压源低通滤波器,如图4所示,其中,截止频率,放大倍数为1.5倍,这里的Q值由滤波电路的放大倍数设定,其值为2/3。在电路的zui后增加了一级电压跟随器。
  •      2.3滤波电路      由于数模转换器AD9708输出的信号附加有大量的高频噪声,进行必要的平滑滤波处理后才能得到所需信号,选用由运算放大器LM318及必要的元件组成二阶压控电压源低通滤波器,如图4所示,其中,截止频率,放大倍数为1.5倍,这里的Q值由滤波电路的放大倍数设定,其值为2/3。在电路的zui后增加了一级电压跟随器。 >>
  • 来源:www.ybzhan.cn/tech_news/detail/66323.html
  • TINA能否仿真运放的最大共模电压范围?</p> <p>&nbsp;</p> <p>在仿真中,+-5V供电的<a href="http://www.ti.com.cn/product/cn/LM358" target="extwin">LM358</a>,在共模电压加到7v还能正常放大,与实际不符。</p> <p>是否所有运放的模型都不能体现最大共模的范围?</p> <p>&am
  • TINA能否仿真运放的最大共模电压范围?</p> <p>&nbsp;</p> <p>在仿真中,+-5V供电的<a href="http://www.ti.com.cn/product/cn/LM358" target="extwin">LM358</a>,在共模电压加到7v还能正常放大,与实际不符。</p> <p>是否所有运放的模型都不能体现最大共模的范围?</p> <p>&am >>
  • 来源:www.deyisupport.com/question_answer/analog/amplifiers/f/52/t/66029.aspx
  • 【技术保护点】 一种电子设备故障检测电路,其特征在于:包括待检测电子设备、开关、电压消耗元件和处理器,电源依次串联开关、电压消耗元件和待检测电子设备接地,所述电压消耗元件的第一端接处理器的第一采样输入端,所述电压消耗元件的第二端接处理器的第二采样输入端,所述处理器对第一采样输入端的信号和第二采样输入端信号进行处理分析,判断待检测电子设备是否发生故障。 【技术特征摘要】 1.
  • 【技术保护点】 一种电子设备故障检测电路,其特征在于:包括待检测电子设备、开关、电压消耗元件和处理器,电源依次串联开关、电压消耗元件和待检测电子设备接地,所述电压消耗元件的第一端接处理器的第一采样输入端,所述电压消耗元件的第二端接处理器的第二采样输入端,所述处理器对第一采样输入端的信号和第二采样输入端信号进行处理分析,判断待检测电子设备是否发生故障。 【技术特征摘要】 1. >>
  • 来源:www.jigao616.com/zhuanlijieshao_18110870.aspx
  • 通过放大电路的图解分析我们看到,放大电路的静态工作点对于能否不失真地放大交流信号是十分关键的。如果我们把静态工作点选得比较适中,如图中的Q点,而且交流输入信号ui的幅值比较小,则可以不失真地放大交流信号。但是,如果静态工作点的位置过低,如图中的Q点,则会出现截止失真,这是由于工作点进入截止区而引起的。如果工作点的位置选得过高,如图中的Q点,则会出现饱和失真,这是由于工作点进入饱和区而引起的。截止区和饱和区被称为非线性区,所以上述失真也称为非线性失真。   改善非线性失真的措施:   选择合适的
  • 通过放大电路的图解分析我们看到,放大电路的静态工作点对于能否不失真地放大交流信号是十分关键的。如果我们把静态工作点选得比较适中,如图中的Q点,而且交流输入信号ui的幅值比较小,则可以不失真地放大交流信号。但是,如果静态工作点的位置过低,如图中的Q点,则会出现截止失真,这是由于工作点进入截止区而引起的。如果工作点的位置选得过高,如图中的Q点,则会出现饱和失真,这是由于工作点进入饱和区而引起的。截止区和饱和区被称为非线性区,所以上述失真也称为非线性失真。   改善非线性失真的措施:   选择合适的 >>
  • 来源:54diangong.com/post/9194.html
  • 电路图。输出静态电压1.65 V 表1中的测量数据是使用图2所示的评估板图片测得的。使用的电流检测放大器是NCS213R和1 m并联电阻器;电路图参见图3。在表1中,连接正确的测量误差(%)列-测得输出电压与理想输出电压的测量误差非常小,约为0.1%;同样,直接在输入引脚处的测量值与直接测量的并联电阻的差值很小,最多略高于0.
  • 电路图。输出静态电压1.65 V 表1中的测量数据是使用图2所示的评估板图片测得的。使用的电流检测放大器是NCS213R和1 m并联电阻器;电路图参见图3。在表1中,连接正确的测量误差(%)列-测得输出电压与理想输出电压的测量误差非常小,约为0.1%;同样,直接在输入引脚处的测量值与直接测量的并联电阻的差值很小,最多略高于0. >>
  • 来源:www.elecfans.com/d/951906.html
  • NJM4556A集成电路是高增益、大输出电流双路运算放大器,能够驱动70mA到150负载(10.5V输出电压),采用低电源电压工作(V+/V-=2V~)。NJM4556A综合了常用的NJM4558的许多特性,并能够驱动150的负载。此外,NJM4556A的宽带宽、低噪声、高斜率和低失真度使之非常适用于许多的音响、远程通信和乐器应用。
  • NJM4556A集成电路是高增益、大输出电流双路运算放大器,能够驱动70mA到150负载(10.5V输出电压),采用低电源电压工作(V+/V-=2V~)。NJM4556A综合了常用的NJM4558的许多特性,并能够驱动150的负载。此外,NJM4556A的宽带宽、低噪声、高斜率和低失真度使之非常适用于许多的音响、远程通信和乐器应用。 >>
  • 来源:lxwy.ic37.com/CompanyNewsView.asp?Newsid=460672
  • 图7:添加到运算放大器电路的低电容JFET,可降低输入电容并减少噪声(图片来自参考文献4) 高阻抗输入、缓冲的A-D转换器可简化信号调节 ADI公司的LTC2358-18是一款18位、200 kHz、低噪声的A/D转换器,具有同步采样的缓冲8通道输入。为了协助MEMS和传感器输入的信号调节,其集成的皮安输入模拟缓冲器、宽输入共模范围和128 dB CMRR等特性有助于最大限度地减少对外部信号调节的需要,甚至在某些设计中根本不需要它。 介于输入和VCC/VEE电源之间的二极管可为ADC输入提供必要的ESD
  • 图7:添加到运算放大器电路的低电容JFET,可降低输入电容并减少噪声(图片来自参考文献4) 高阻抗输入、缓冲的A-D转换器可简化信号调节 ADI公司的LTC2358-18是一款18位、200 kHz、低噪声的A/D转换器,具有同步采样的缓冲8通道输入。为了协助MEMS和传感器输入的信号调节,其集成的皮安输入模拟缓冲器、宽输入共模范围和128 dB CMRR等特性有助于最大限度地减少对外部信号调节的需要,甚至在某些设计中根本不需要它。 介于输入和VCC/VEE电源之间的二极管可为ADC输入提供必要的ESD >>
  • 来源:www.av010.com/zixun/news_info_21550.html
  • LT1464 (双通道) 和 LT1465 (四通道) 是首批可为高达 10nF 的电容性负载提供微微安输入偏置电流 (典型值为 500fA) 和单位增益稳定性的微功率运放 (每个放大器的最大电源电流为 200A)。输出能够将一个 10k 负载摆动至任一电源的 1.5V 之内,就像那些所需电源电流高出一个数量级的运放一样。这种独特的性能组合使 LT1464 / LT1465 非常适合于很宽的输入和输出阻抗范围。 在 LT1464 / LT1465 的设计和测试中,重点特别放在了优化低成本 SO-8 (双
  • LT1464 (双通道) 和 LT1465 (四通道) 是首批可为高达 10nF 的电容性负载提供微微安输入偏置电流 (典型值为 500fA) 和单位增益稳定性的微功率运放 (每个放大器的最大电源电流为 200A)。输出能够将一个 10k 负载摆动至任一电源的 1.5V 之内,就像那些所需电源电流高出一个数量级的运放一样。这种独特的性能组合使 LT1464 / LT1465 非常适合于很宽的输入和输出阻抗范围。 在 LT1464 / LT1465 的设计和测试中,重点特别放在了优化低成本 SO-8 (双 >>
  • 来源:bdtic.com/cn/linear/LT1464
  • 工作原理:电路如图所示。IC1通电后,在其3脚与5脚分别产生正的与负的窄幅脉冲信号。两路脉冲信号经高速运算放大器IC2比较放大后合并成周期为1秒的窄幅脉冲信号,经IC3D型触发器后变成周期为2秒,占空比为1的秒脉冲信号。 调节微调电容C1可以改变石英谐振器SJT的振荡频率。配合高精度的高频计数器调节电容C1便可以得到精确的秒脉冲信号。  精确的秒脉冲信号产生器电路图  精确的基准时钟振荡电路:冲信号产生器 如图所示,由555和R1、R2、C1组成可控的多谐振荡器,它的振荡频率除与RC时间常数有关外,还可由
  • 工作原理:电路如图所示。IC1通电后,在其3脚与5脚分别产生正的与负的窄幅脉冲信号。两路脉冲信号经高速运算放大器IC2比较放大后合并成周期为1秒的窄幅脉冲信号,经IC3D型触发器后变成周期为2秒,占空比为1的秒脉冲信号。 调节微调电容C1可以改变石英谐振器SJT的振荡频率。配合高精度的高频计数器调节电容C1便可以得到精确的秒脉冲信号。 精确的秒脉冲信号产生器电路图 精确的基准时钟振荡电路:冲信号产生器 如图所示,由555和R1、R2、C1组成可控的多谐振荡器,它的振荡频率除与RC时间常数有关外,还可由 >>
  • 来源:www.dzkfw.com.cn/Article/signal/4605.html
  • 是电工、模电、数电、电拖实验与技能实训考核有机的结合,做到资源共享一室多用,减少实验实训指导教师人员和基建投入,经济效益显著。与KHKL-745系列产品相比,在实验台技术,实验内容深度与广度做了较大的改进。实验项目包括电工学、电工原理、模拟电子技术、数字电子电路、电力拖动、电气控制、继电控制等课程,可完成交直流、振荡、磁场电路、运算放大器、整流电路、交直流放大电路、数字逻辑电路、电气控制等电路实验。实验部分采用德国职业教育先进的实验方法:利用九孔通用万能实验板和分立式透明元件盒灵活地组合实验,元器件可重复
  • 是电工、模电、数电、电拖实验与技能实训考核有机的结合,做到资源共享一室多用,减少实验实训指导教师人员和基建投入,经济效益显著。与KHKL-745系列产品相比,在实验台技术,实验内容深度与广度做了较大的改进。实验项目包括电工学、电工原理、模拟电子技术、数字电子电路、电力拖动、电气控制、继电控制等课程,可完成交直流、振荡、磁场电路、运算放大器、整流电路、交直流放大电路、数字逻辑电路、电气控制等电路实验。实验部分采用德国职业教育先进的实验方法:利用九孔通用万能实验板和分立式透明元件盒灵活地组合实验,元器件可重复 >>
  • 来源:www.caigou.com.cn/product/20160516279421.shtml
  • 简介: 基于AT89S52单片机的毫欧表设计是采用伏安法测量电阻。采用TLC5615数模转换芯片和LM358运算放大器及三极管TIP41构成的压控恒流源提拱恒定的电流。测量电阻时可选择的电流分别为1mA,10mA,100mA。测量电阻的量程分别为40.00Ω、4000mΩ、400.0mΩ。测量的电压信号通过LM358运算放器放大100倍后经过TLC1549模数芯片传入单片机进行计算处理并在数码管上输出电阻值!
  • 简介: 基于AT89S52单片机的毫欧表设计是采用伏安法测量电阻。采用TLC5615数模转换芯片和LM358运算放大器及三极管TIP41构成的压控恒流源提拱恒定的电流。测量电阻时可选择的电流分别为1mA,10mA,100mA。测量电阻的量程分别为40.00Ω、4000mΩ、400.0mΩ。测量的电压信号通过LM358运算放器放大100倍后经过TLC1549模数芯片传入单片机进行计算处理并在数码管上输出电阻值! >>
  • 来源:my.bj51.org/file/id/20560