• 这个学期开始学FPGA开发,使用的开发板是Nexys3,硬件编程语言是Verilog。苦于之前一直没有找到很好的代码学习资料,于是在这里将自己写过的一些相对简单的代码整理了一下分享开来,希望能对各位初学者有所帮助。   本文提供的Verilog代码都是属于Demo级别的,不过限于本人水平,也不免会有一些瑕疵,这里仅供参考,还请各位慎思!(博学、审问、慎思、明辨、笃行。 我的校训啊!)   如果各位还想学习更加复杂的Verilog project,请持续关注我以后的博客更新。(
  • 这个学期开始学FPGA开发,使用的开发板是Nexys3,硬件编程语言是Verilog。苦于之前一直没有找到很好的代码学习资料,于是在这里将自己写过的一些相对简单的代码整理了一下分享开来,希望能对各位初学者有所帮助。 本文提供的Verilog代码都是属于Demo级别的,不过限于本人水平,也不免会有一些瑕疵,这里仅供参考,还请各位慎思!(博学、审问、慎思、明辨、笃行。 我的校训啊!) 如果各位还想学习更加复杂的Verilog project,请持续关注我以后的博客更新。( >>
  • 来源:www.cfanz.cn/index.php?c=article&a=read&id=222654
  • 步进电机内部结构如图1所示:  如何能使它转起来呢?一搬有两种方法: 1.单相驱动:一相一相驱动,线圈加高电平顺序是:黄蓝红橙;或是:橙红蓝黄。其中黑白接地。 2.双相驱动:当要求电动机输出大功率时可以两相两相同时驱动,线圈加高电平顺序为:黄+红蓝+橙;或是:橙+蓝红+黄。 了解步进电机的驱动方式后、我想到了用移位寄存器产生移位脉冲来让步进电机动起来。电路如图2。  图2是通过拨码开关控制74LS194使Q0、Q1、Q2、Q3产生上面提过的两种移位脉冲来控制U1(光电耦合器
  • 步进电机内部结构如图1所示: 如何能使它转起来呢?一搬有两种方法: 1.单相驱动:一相一相驱动,线圈加高电平顺序是:黄蓝红橙;或是:橙红蓝黄。其中黑白接地。 2.双相驱动:当要求电动机输出大功率时可以两相两相同时驱动,线圈加高电平顺序为:黄+红蓝+橙;或是:橙+蓝红+黄。 了解步进电机的驱动方式后、我想到了用移位寄存器产生移位脉冲来让步进电机动起来。电路如图2。 图2是通过拨码开关控制74LS194使Q0、Q1、Q2、Q3产生上面提过的两种移位脉冲来控制U1(光电耦合器 >>
  • 来源:www.zxskj.cn/dianzi/zidongkongzhidianlu/1316.html
  • 处理。  在图8.8.3中还画出了第5到第8个时钟脉冲作用下,输入数码在寄存器中移位的波形(如图8.8.2所示)。由图可见,在第8个时钟脉冲作用后,数码从Q3端已全部移出寄存器。这说明存入该寄存器中的数码也可以从Q端串行输出。根据需要,可用更多的触发器组成多位移位寄存器。 除了用边沿D 触发器外,还可用其他类型的触发器来组成移位寄存器,例如,用主从JK 触发器来组成移位寄存器,其级间连接方式如图8.
  • 处理。 在图8.8.3中还画出了第5到第8个时钟脉冲作用下,输入数码在寄存器中移位的波形(如图8.8.2所示)。由图可见,在第8个时钟脉冲作用后,数码从Q3端已全部移出寄存器。这说明存入该寄存器中的数码也可以从Q端串行输出。根据需要,可用更多的触发器组成多位移位寄存器。 除了用边沿D 触发器外,还可用其他类型的触发器来组成移位寄存器,例如,用主从JK 触发器来组成移位寄存器,其级间连接方式如图8. >>
  • 来源:www.pw0.cn/baike/jidianqi/20161059683.html
  • 一种基于移位寄存器的CAM的Verilog HDL实现 摘要:一种利用Verilog HDL设计CAM的方案,该方案以移位寄存器为核心,所实现的CAN具有可重新配置改变字长、易于扩展、匹配查找速度等特点,并在网络协处理器仿真中得到了应用。 关键词:CAM 移位寄存器 Verilog HDL CAM (Content Addressable Memory,内容可寻址存储器)是一种特殊的存储阵列。它通过将输入数据与CAM中存储的所有数据项同时进行比较,迅速判断出输入数据是否与CAM中的 存储数据项相匹配,并给
  • 一种基于移位寄存器的CAM的Verilog HDL实现 摘要:一种利用Verilog HDL设计CAM的方案,该方案以移位寄存器为核心,所实现的CAN具有可重新配置改变字长、易于扩展、匹配查找速度等特点,并在网络协处理器仿真中得到了应用。 关键词:CAM 移位寄存器 Verilog HDL CAM (Content Addressable Memory,内容可寻址存储器)是一种特殊的存储阵列。它通过将输入数据与CAM中存储的所有数据项同时进行比较,迅速判断出输入数据是否与CAM中的 存储数据项相匹配,并给 >>
  • 来源:1-fun.com/a/ruanjiankaifa/2016/0814/1195.html
  • 4.4.2 移位型计数器 移位寄存器也可以构成计数器,称为移位型计数器。它有两种结构:环形计数器和扭环形计数器。 图 4-4-3 环形计数器和扭环形计数器 4.4.3 串-并变换器及并-串变换器 串-并变换器是把若干位串行二进制编码变成并行二进制编码的电路。并-串变换器则刚刚相反。  图 4-4-4 8位串-并变换器  图 4-4-5 8位并-串变换器 4.
  • 4.4.2 移位型计数器 移位寄存器也可以构成计数器,称为移位型计数器。它有两种结构:环形计数器和扭环形计数器。 图 4-4-3 环形计数器和扭环形计数器 4.4.3 串-并变换器及并-串变换器 串-并变换器是把若干位串行二进制编码变成并行二进制编码的电路。并-串变换器则刚刚相反。 图 4-4-4 8位串-并变换器 图 4-4-5 8位并-串变换器 4. >>
  • 来源:gc.nuaa.edu.cn/digital/kejian/ch4/4-4.htm
  • (255)  贴片/片式开关(15) 轻触开关(47) 自锁开关(6) 微动开关(31) 薄膜/金属弹片开关(1) 直键开关(1) 船形/跷板/波动开关(3) 按钮/按键开关(1) 检测开关(2) 拨动/滑动开关(57) 推推式电源开关(25) DIP/拨码开关(3) (手机)天线开关(1) 舌簧/干簧管(磁控管)开关(10) 侧按开关(1) 触摸/感应开关(1) 霍尔开关(6) 光电开关(8) 定时/时控开关(6) 遥控开关(2) 接近开关(2) 空气开关(14) 倒顺开关(2) 液位/水位/料位开关(
  • (255) 贴片/片式开关(15) 轻触开关(47) 自锁开关(6) 微动开关(31) 薄膜/金属弹片开关(1) 直键开关(1) 船形/跷板/波动开关(3) 按钮/按键开关(1) 检测开关(2) 拨动/滑动开关(57) 推推式电源开关(25) DIP/拨码开关(3) (手机)天线开关(1) 舌簧/干簧管(磁控管)开关(10) 侧按开关(1) 触摸/感应开关(1) 霍尔开关(6) 光电开关(8) 定时/时控开关(6) 遥控开关(2) 接近开关(2) 空气开关(14) 倒顺开关(2) 液位/水位/料位开关( >>
  • 来源:product.dzsc.com/product/infomation/123460/201251211212699.html
  • 移位寄存器 移位寄存器不仅有存放数码而且有 的功能。 下图是由JK触发器组成的四位移位寄存器  下图是由维持阻塞型D触发器组成的四位移位寄存器。它既可并行输入(输入端为,)/串行输出(输出端为),又可串行输入(输入端为D)/串行输出。    下图所示的是应用于加法器中的一种。图中,,,是三个n位的移位寄存器,和是并行输入/串行输出,是串行输入/并行输出。  
  • 移位寄存器 移位寄存器不仅有存放数码而且有 的功能。 下图是由JK触发器组成的四位移位寄存器 下图是由维持阻塞型D触发器组成的四位移位寄存器。它既可并行输入(输入端为,)/串行输出(输出端为),又可串行输入(输入端为D)/串行输出。   下图所示的是应用于加法器中的一种。图中,,,是三个n位的移位寄存器,和是并行输入/串行输出,是串行输入/并行输出。   >>
  • 来源:eelab.sjtu.edu.cn/dg/wlkc/netpages/d22_2_2.htm
  • 步进电机内部结构如图1所示:  如何能使它转起来呢?一搬有两种方法: 1.单相驱动:一相一相驱动,线圈加高电平顺序是:黄蓝红橙;或是:橙红蓝黄。其中黑白接地。 2.双相驱动:当要求电动机输出大功率时可以两相两相同时驱动,线圈加高电平顺序为:黄+红蓝+橙;或是:橙+蓝红+黄。 了解步进电机的驱动方式后、我想到了用移位寄存器产生移位脉冲来让步进电机动起来。电路如图2。  图2是通过拨码开关控制74LS194使Q0、Q1、Q2、Q3产生上面提过的两种移位脉冲来控制U1(光电耦合器
  • 步进电机内部结构如图1所示: 如何能使它转起来呢?一搬有两种方法: 1.单相驱动:一相一相驱动,线圈加高电平顺序是:黄蓝红橙;或是:橙红蓝黄。其中黑白接地。 2.双相驱动:当要求电动机输出大功率时可以两相两相同时驱动,线圈加高电平顺序为:黄+红蓝+橙;或是:橙+蓝红+黄。 了解步进电机的驱动方式后、我想到了用移位寄存器产生移位脉冲来让步进电机动起来。电路如图2。 图2是通过拨码开关控制74LS194使Q0、Q1、Q2、Q3产生上面提过的两种移位脉冲来控制U1(光电耦合器 >>
  • 来源:www.zxskj.cn/dianzi/zidongkongzhidianlu/1316.html
  • 需要的功能模块都集成到一个 里, 构建一个可编程的片上系统[1]。它还具有灵活的设计方式,可裁减、可扩充、可升级,具备系统可编程等功能,是一种优秀的嵌入式系统设计技术[2]。本文研究了一种基于SOPC技术的嵌入式数字音频录放系统的设计方案。系统通过在FPGA芯片上配置NiosII软核处理器和相关的接口模块来实现嵌入式系统的主要硬件结构,并结合嵌入式系统所支持的软件设计来控制音频编/解码芯片WM8731和SDRAM,实现了音频信号的A/D、D/A转换、存储、回放等功能。由于采用了SOPC和DMA控制技术,该
  • 需要的功能模块都集成到一个 里, 构建一个可编程的片上系统[1]。它还具有灵活的设计方式,可裁减、可扩充、可升级,具备系统可编程等功能,是一种优秀的嵌入式系统设计技术[2]。本文研究了一种基于SOPC技术的嵌入式数字音频录放系统的设计方案。系统通过在FPGA芯片上配置NiosII软核处理器和相关的接口模块来实现嵌入式系统的主要硬件结构,并结合嵌入式系统所支持的软件设计来控制音频编/解码芯片WM8731和SDRAM,实现了音频信号的A/D、D/A转换、存储、回放等功能。由于采用了SOPC和DMA控制技术,该 >>
  • 来源:www.lightingsd.com/html/zhaomingbaike/dianzijishu/2009/0322/45479.html
  • 首次循环时开始时,根据LABVIEW数据流的控制方式,从左侧寄存器单元读取SR寄存器的当前值。由于所有SR单元初始化为0,所以首次读取的SR单元值均为0。当循环结束时,输入数组的首个元素2进入SR的数据输入端,同时进行移位操作。以后每次循环依次类推。表格1详细说明了每次循环前后SR单元中存储值的变化情况。
  • 首次循环时开始时,根据LABVIEW数据流的控制方式,从左侧寄存器单元读取SR寄存器的当前值。由于所有SR单元初始化为0,所以首次读取的SR单元值均为0。当循环结束时,输入数组的首个元素2进入SR的数据输入端,同时进行移位操作。以后每次循环依次类推。表格1详细说明了每次循环前后SR单元中存储值的变化情况。 >>
  • 来源:blog.csdn.net/lz2906190/article/details/38870277?locationNum=9
  •   寄存器是用来暂时存放数码的,是由 构成的。一个触发器只能存储1位二进制数,要存放 九位二进制数时,就需用瓦个触发器。按照功能的不同,寄存器可分为数码寄存器和移位寄存器。数码寄 存器具有寄存数码的功能,雨移位寄存器不仅有寄存数码的功能,还有移位的功能。移位寄存器中的数据 可以在移位脉冲作用下依次逐位右移或左移,数据既可以并行输入、并行输出,也可以串行输入、串行输 出,还可以并行输人、串行输出,串行输人、并行输出,输人输出方式十分灵活,用途也很广。根据移位 情况不同,移位寄存器分为单向移位寄存器(左移寄存
  •   寄存器是用来暂时存放数码的,是由 构成的。一个触发器只能存储1位二进制数,要存放 九位二进制数时,就需用瓦个触发器。按照功能的不同,寄存器可分为数码寄存器和移位寄存器。数码寄 存器具有寄存数码的功能,雨移位寄存器不仅有寄存数码的功能,还有移位的功能。移位寄存器中的数据 可以在移位脉冲作用下依次逐位右移或左移,数据既可以并行输入、并行输出,也可以串行输入、串行输 出,还可以并行输人、串行输出,串行输人、并行输出,输人输出方式十分灵活,用途也很广。根据移位 情况不同,移位寄存器分为单向移位寄存器(左移寄存 >>
  • 来源:www.gdjyw.com/web-shebei/dianqidianlujichu/15784.html
  • 这样将两个N点的DFT分成两个N/2点的DFT,分的方法是将x(k)按序号k的奇、偶分开。通过这种方式继续分下去,直到得到两点的DFT。采用DIF方法设计的FFT,其输入是正序,输出是按照奇偶分开的倒序。 2 移位寄存器流水线结构的FFT 在传统流水线结构的FFT中,需要将全部数据输入寄存器后,可开始蝶形运算。在基-2 DIF算法中可以发现,当前N/2个数据进入寄存器后,运算便可以开始,此后进入的第N/2+1个数据与寄存器第一个数据进行蝶形运算,以此类推。 由于采用频域抽取法,不需要对输入的数据进行倒序
  • 这样将两个N点的DFT分成两个N/2点的DFT,分的方法是将x(k)按序号k的奇、偶分开。通过这种方式继续分下去,直到得到两点的DFT。采用DIF方法设计的FFT,其输入是正序,输出是按照奇偶分开的倒序。 2 移位寄存器流水线结构的FFT 在传统流水线结构的FFT中,需要将全部数据输入寄存器后,可开始蝶形运算。在基-2 DIF算法中可以发现,当前N/2个数据进入寄存器后,运算便可以开始,此后进入的第N/2+1个数据与寄存器第一个数据进行蝶形运算,以此类推。 由于采用频域抽取法,不需要对输入的数据进行倒序 >>
  • 来源:xilinx.eetop.cn/viewnews-146
  • 移位寄存器 移位寄存器不仅有存放数码而且有 的功能。 下图是由JK触发器组成的四位移位寄存器  下图是由维持阻塞型D触发器组成的四位移位寄存器。它既可并行输入(输入端为,)/串行输出(输出端为),又可串行输入(输入端为D)/串行输出。    下图所示的是应用于加法器中的一种。图中,,,是三个n位的移位寄存器,和是并行输入/串行输出,是串行输入/并行输出。  
  • 移位寄存器 移位寄存器不仅有存放数码而且有 的功能。 下图是由JK触发器组成的四位移位寄存器 下图是由维持阻塞型D触发器组成的四位移位寄存器。它既可并行输入(输入端为,)/串行输出(输出端为),又可串行输入(输入端为D)/串行输出。   下图所示的是应用于加法器中的一种。图中,,,是三个n位的移位寄存器,和是并行输入/串行输出,是串行输入/并行输出。   >>
  • 来源:eelab.sjtu.edu.cn/dg/wlkc/netpages/d22_2_2.htm
  • 前段时间做了个迷你电子称跟大家分享一下。 当时设计的时候想着用两节五号干电池让它工作,综合了一下成本,选用了STC15W408AS 20P 做主控,采用74HC595串口驱动数码管做显示。 不得不在这里赞扬一下STC15W408AS这个单片机,个人认为它价格便宜,功能强大,引脚少,更重要的是工作电压是5.
  • 前段时间做了个迷你电子称跟大家分享一下。 当时设计的时候想着用两节五号干电池让它工作,综合了一下成本,选用了STC15W408AS 20P 做主控,采用74HC595串口驱动数码管做显示。 不得不在这里赞扬一下STC15W408AS这个单片机,个人认为它价格便宜,功能强大,引脚少,更重要的是工作电压是5. >>
  • 来源:www.ndiy.cn/forum.php?mod=viewthread&tid=33868&highlight=STC15W
  • 从上面的算法可以看出,处理数据的采样时钟对每一个抽头来说都是并行的,并且加法器和移位寄存器采用级联方式,完成了累加器的功能,综合了加法器和移位寄存器的优点,而且这种算法的各级结构相同,方便扩展,实现了任意阶数的滤波器。算法中,真正点用系统资源的是乘法器。如果将系数量化成二进制,就能采用移位寄存器和加法器实现乘法功能。对于一个特定的滤波器,由于它有固定的系数,乘法功能就是一个长数乘法器。下面将讨论乘法器的设计问题。 2 FIR并行滤波器的乘法器设计 在并行滤波器的设计中,每一个乘法器的一端输入数据,另一端为
  • 从上面的算法可以看出,处理数据的采样时钟对每一个抽头来说都是并行的,并且加法器和移位寄存器采用级联方式,完成了累加器的功能,综合了加法器和移位寄存器的优点,而且这种算法的各级结构相同,方便扩展,实现了任意阶数的滤波器。算法中,真正点用系统资源的是乘法器。如果将系数量化成二进制,就能采用移位寄存器和加法器实现乘法功能。对于一个特定的滤波器,由于它有固定的系数,乘法功能就是一个长数乘法器。下面将讨论乘法器的设计问题。 2 FIR并行滤波器的乘法器设计 在并行滤波器的设计中,每一个乘法器的一端输入数据,另一端为 >>
  • 来源:xilinx.eetop.cn/?action-viewnews-itemid-144
  • 移位寄存器 移位寄存器不仅有存放数码而且有 的功能。 下图是由JK触发器组成的四位移位寄存器  下图是由维持阻塞型D触发器组成的四位移位寄存器。它既可并行输入(输入端为,)/串行输出(输出端为),又可串行输入(输入端为D)/串行输出。    下图所示的是应用于加法器中的一种。图中,,,是三个n位的移位寄存器,和是并行输入/串行输出,是串行输入/并行输出。  
  • 移位寄存器 移位寄存器不仅有存放数码而且有 的功能。 下图是由JK触发器组成的四位移位寄存器 下图是由维持阻塞型D触发器组成的四位移位寄存器。它既可并行输入(输入端为,)/串行输出(输出端为),又可串行输入(输入端为D)/串行输出。   下图所示的是应用于加法器中的一种。图中,,,是三个n位的移位寄存器,和是并行输入/串行输出,是串行输入/并行输出。   >>
  • 来源:eelab.sjtu.edu.cn/dg/wlkc/netpages/d22_2_2.htm
  • 基于上述基本原理,将这种移位寄存器结构扩展到整个FFT系统的各级,可以发现各级使用的移位寄存器数量是递减的。现使用一个8点结构来进行说明。 如图3所示,数据由输入l和输入2进入第一级。通过开关进行选通控制。由于是N=8的运算,所以各级分别加入4级、2级和1级的移位寄存器。
  • 基于上述基本原理,将这种移位寄存器结构扩展到整个FFT系统的各级,可以发现各级使用的移位寄存器数量是递减的。现使用一个8点结构来进行说明。 如图3所示,数据由输入l和输入2进入第一级。通过开关进行选通控制。由于是N=8的运算,所以各级分别加入4级、2级和1级的移位寄存器。 >>
  • 来源:xilinx.eetop.cn/viewnews-146