• “放大”是三极管最基本的功能。本文将以共射放大电路为例,分析三极管放大的原理。 在说到放大时,经常会碰到一个单位,dB。对于电压和电流来说,dB=20*lg(放大倍数)。比如一个放大电路的电压放大倍数为10倍,就是等于20dBV。 一个基本的共射放大电路如图一所示。  图一。 根据《三极管入门教程之一》里的内容,我们已经知道,为了让一个三极管正常进行工作,其基极-发射极的正向压降要达到0.
  • “放大”是三极管最基本的功能。本文将以共射放大电路为例,分析三极管放大的原理。 在说到放大时,经常会碰到一个单位,dB。对于电压和电流来说,dB=20*lg(放大倍数)。比如一个放大电路的电压放大倍数为10倍,就是等于20dBV。 一个基本的共射放大电路如图一所示。 图一。 根据《三极管入门教程之一》里的内容,我们已经知道,为了让一个三极管正常进行工作,其基极-发射极的正向压降要达到0. >>
  • 来源:www.pw0.cn/article/dianzi/20161261918.html
  • 图3 小信号交流电路等效原则:1.大容量电容短路;2.Vcc对地短路;3.需要考虑re’; 一般情况若是需要确定上述各个参数,需要从静态工作点出发。经验公式如下: Vcq ≈ 1/2 * Vcc,Rc = 10Re; re’ = 25/Ieq;
  • 图3 小信号交流电路等效原则:1.大容量电容短路;2.Vcc对地短路;3.需要考虑re’; 一般情况若是需要确定上述各个参数,需要从静态工作点出发。经验公式如下: Vcq ≈ 1/2 * Vcc,Rc = 10Re; re’ = 25/Ieq; >>
  • 来源:www.bubuko.com/infodetail-1460407.html
  • 1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。 2、电流串联负反馈过程的分析,负反馈对电路参数的影响。 3、静态工作点的计算、电压放大倍数的计算。 4、受控源等效电路分析。 七、 共集电极放大电路(射极跟随器)
  • 1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。 2、电流串联负反馈过程的分析,负反馈对电路参数的影响。 3、静态工作点的计算、电压放大倍数的计算。 4、受控源等效电路分析。 七、 共集电极放大电路(射极跟随器) >>
  • 来源:www.dzsc.com/data/Circuit-51610.html
  • 对模拟电路的掌握分为三个层次。 初级层次是熟练记住这二十个电路,清楚这二十个电路的作用。只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。 中级层次是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修
  • 对模拟电路的掌握分为三个层次。 初级层次是熟练记住这二十个电路,清楚这二十个电路的作用。只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。 中级层次是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修 >>
  • 来源:www.bbfar.com/article/1e/2975.html
  • 推荐一本不错的书籍,《电子设计从零开始》(杨欣)。通读此书,通俗易懂,还结合multisim进行仿真验证。对本科阶段的模电书籍是一种颠覆。 以下截取自里面部分章节,如何计算共射极放大电路的各个参数。很实用。 1.Vcq为集电极的静态工作电压,Vcq的选取为了避免出现饱和和截止失真,使Vcq ≈ 1/2 * Vcc,Rc = 10Re; 图1为基极分压式共射极放大电路的直流通路
  • 推荐一本不错的书籍,《电子设计从零开始》(杨欣)。通读此书,通俗易懂,还结合multisim进行仿真验证。对本科阶段的模电书籍是一种颠覆。 以下截取自里面部分章节,如何计算共射极放大电路的各个参数。很实用。 1.Vcq为集电极的静态工作电压,Vcq的选取为了避免出现饱和和截止失真,使Vcq ≈ 1/2 * Vcc,Rc = 10Re; 图1为基极分压式共射极放大电路的直流通路 >>
  • 来源:www.cnblogs.com/raymon-tec/p/5293687.html
  • 1.仪器级别:0.1级 2.测量范围:PH:(14.00)pH  MV(0~±1999)mV(自动极性显示) 3.最小显示单位:0.01pH ,1mV 4.温度补偿范围:(0~60) 5.电子元件基本误差:pH:±0.01pH MV:±1mV±1个字 6.仪器的基本误差:±0.02.pH±1个字 7.
  • 1.仪器级别:0.1级 2.测量范围:PH:(14.00)pH  MV(0~±1999)mV(自动极性显示) 3.最小显示单位:0.01pH ,1mV 4.温度补偿范围:(0~60) 5.电子元件基本误差:pH:±0.01pH MV:±1mV±1个字 6.仪器的基本误差:±0.02.pH±1个字 7. >>
  • 来源:www.caisns.com/sellinfo/show-362051.html
  • 五、共射极放大电路      注意要点:   1、三极管的结构、三极管各极电流关系、特性曲线、放大条件;   2、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图;   3、静态工作点的计算、电压放大倍数的计算。   六、分压偏置式共射极放大电路      分压偏置式共射极放大电路   注意要点:   1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图;   2、电流串联负反馈过程的分析,负反馈对电 路参数的影响;   
  • 五、共射极放大电路      注意要点:   1、三极管的结构、三极管各极电流关系、特性曲线、放大条件;   2、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图;   3、静态工作点的计算、电压放大倍数的计算。   六、分压偏置式共射极放大电路      分压偏置式共射极放大电路   注意要点:   1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图;   2、电流串联负反馈过程的分析,负反馈对电 路参数的影响;    >>
  • 来源:meng.cecb2b.com/info/20121105/253052.html
  • 2.1.1 5倍的放大 放大电路的作用是将小信号放大为大信号。例如,将0.1V的信号提高为1V信号——即是放大。 首先,用晶体管组成一般的放大电路,并用示波器对各部分的工作波形进行观察。 图2.1是进行实验的电路。看一下晶体管就知道,晶体管有三个端子,分别是基极、发射极和集电极。在图2.
  • 2.1.1 5倍的放大 放大电路的作用是将小信号放大为大信号。例如,将0.1V的信号提高为1V信号——即是放大。 首先,用晶体管组成一般的放大电路,并用示波器对各部分的工作波形进行观察。 图2.1是进行实验的电路。看一下晶体管就知道,晶体管有三个端子,分别是基极、发射极和集电极。在图2. >>
  • 来源:sciencep.eefocus.com/book/08-08/415526010812.html
  • YPZrO2系列氧化锆氧量分析仪适用于工业炉窖烟气中含氧 量的连续监测,作为操作人员调节燃风配比的依据,或与自 控系统连接,实现低氧合理燃烧,达到降低燃耗,稳定工艺, 提高产品质量,减少环境污染等目的,具有显著的经济效益 和社会效益。                  工作原理: 氧化锆是一种高温电解质浓差电池,在数百度的高温环境下,具有能产生氧离子迁移的导电性能,由于被测气体(烟气或其它气体)与参比气体(空气或其它气体)在氧化锆两侧铂电极的氧分压不同,在两极间有一定数量的氧离子迁移而产生了氧浓差电势,其
  • YPZrO2系列氧化锆氧量分析仪适用于工业炉窖烟气中含氧 量的连续监测,作为操作人员调节燃风配比的依据,或与自 控系统连接,实现低氧合理燃烧,达到降低燃耗,稳定工艺, 提高产品质量,减少环境污染等目的,具有显著的经济效益 和社会效益。                  工作原理: 氧化锆是一种高温电解质浓差电池,在数百度的高温环境下,具有能产生氧离子迁移的导电性能,由于被测气体(烟气或其它气体)与参比气体(空气或其它气体)在氧化锆两侧铂电极的氧分压不同,在两极间有一定数量的氧离子迁移而产生了氧浓差电势,其 >>
  • 来源:www.ypryb.com/Product/0254795539.html
  • 有假设过,为C20充电引起,后经过验证,把基极分压电阻R87改为510k,R86为330k后<此时实测电压,C点0.9V左右,B点0,9V左右,E点0,3V左右,CE间压降约为3,2V左右>虽然解决了输出变化问题,但放大倍数又达不到,在此基础上调节R85,使放大倍数达标,但又出现放大输出信号出现前一秒左右放大倍数偏小,后恢复正常。 请各位大神指点。
  • 有假设过,为C20充电引起,后经过验证,把基极分压电阻R87改为510k,R86为330k后<此时实测电压,C点0.9V左右,B点0,9V左右,E点0,3V左右,CE间压降约为3,2V左右>虽然解决了输出变化问题,但放大倍数又达不到,在此基础上调节R85,使放大倍数达标,但又出现放大输出信号出现前一秒左右放大倍数偏小,后恢复正常。 请各位大神指点。 >>
  • 来源:www.teaku.com/19/1467813930496194.html
  • FET与BJT的比较2、带源极电阻的NMOS共源极放大电路假设工作在饱和区需要验证是否满足VG=0,IDQ=IVS=VG-VGSQ(饱和区)3、电流源偏置的NMOS共源极放大电路VD=VDD-IDQRdVDSQ=VD-VS二、图解分析由于负载开路,交流负载线与直流负载线相同VGSQ=VGGIDQVDSQvDS/VtOtiD/mAOidvoVDDVDD/RdOiD/mAvDS/VQQQ三、小信号模型分析1、MOSFET的小信号模型输入端口:栅极电流为零,输入端口视为开路,栅-源极间只有电压存在。输出端口
  • FET与BJT的比较2、带源极电阻的NMOS共源极放大电路假设工作在饱和区需要验证是否满足VG=0,IDQ=IVS=VG-VGSQ(饱和区)3、电流源偏置的NMOS共源极放大电路VD=VDD-IDQRdVDSQ=VD-VS二、图解分析由于负载开路,交流负载线与直流负载线相同VGSQ=VGGIDQVDSQvDS/VtOtiD/mAOidvoVDDVDD/RdOiD/mAvDS/VQQQ三、小信号模型分析1、MOSFET的小信号模型输入端口:栅极电流为零,输入端口视为开路,栅-源极间只有电压存在。输出端口 >>
  • 来源:max.book118.com/html/2016/1205/68556960.shtm
  • 标签:style log com http si it la src sp 推荐一本不错的书籍,《电子设计从零开始》(杨欣)。通读此书,通俗易懂,还结合multisim进行仿真验证。对本科阶段的模电书籍是一种颠覆。 以下截取自里面部分章节,如何计算共射极放大电路的各个参数。很实用。 1.Vcq为集电极的静态工作电压,Vcq的选取为了避免出现饱和和截止失真,使Vcq ≈ 1/2 * Vcc,Rc = 10Re; 图1为基极分压式共射极放大电路的直流通路  实际在应用过程中,就是需要确定上述各个电
  • 标签:style log com http si it la src sp 推荐一本不错的书籍,《电子设计从零开始》(杨欣)。通读此书,通俗易懂,还结合multisim进行仿真验证。对本科阶段的模电书籍是一种颠覆。 以下截取自里面部分章节,如何计算共射极放大电路的各个参数。很实用。 1.Vcq为集电极的静态工作电压,Vcq的选取为了避免出现饱和和截止失真,使Vcq ≈ 1/2 * Vcc,Rc = 10Re; 图1为基极分压式共射极放大电路的直流通路 实际在应用过程中,就是需要确定上述各个电 >>
  • 来源:www.bubuko.com/infodetail-1460407.html
  • 分享 QQ空间 新浪微博 腾讯微博 人人网 [导读] 解决的方法是可以使用交流耦合,如下图 使用交流耦合的AD8137放大电路 这样,输入端和输出端的范围都正确了。结果如下图所示 采用交流耦合后正确的结 关键词:电路增益AD813x差分放大器 解决的方法是可以使用交流耦合,如下图  使用交流耦合的AD8137放大电路 这样,输入端和输出端的范围都正确了。结果如下图所示  采用交流耦合后正确的结果 所以在使用AD813x时,一定要先计算各点的电压,然后与数据手册上相同供电电源电压条件下的指标相比较,确定电路
  • 分享 QQ空间 新浪微博 腾讯微博 人人网 [导读] 解决的方法是可以使用交流耦合,如下图 使用交流耦合的AD8137放大电路 这样,输入端和输出端的范围都正确了。结果如下图所示 采用交流耦合后正确的结 关键词:电路增益AD813x差分放大器 解决的方法是可以使用交流耦合,如下图 使用交流耦合的AD8137放大电路 这样,输入端和输出端的范围都正确了。结果如下图所示 采用交流耦合后正确的结果 所以在使用AD813x时,一定要先计算各点的电压,然后与数据手册上相同供电电源电压条件下的指标相比较,确定电路 >>
  • 来源:www.chemdy.com/info/9-18901.html
  • 单级共射放大电路Pspice分析要求:放大电路有合适静态工作点,输入正弦信号幅值为30mV,电压放大倍数为30左右,输入阻抗大于1K,输出阻抗小于5.1K及通频带大于1Mhz。步骤一:绘制电路原理图单级共射放大电路电路图步骤二:对电路进行仿真1、仿真并查阅电路的静态工作点分析:由表中参数可得,其VBE=649mV、IB=25.
  • 单级共射放大电路Pspice分析要求:放大电路有合适静态工作点,输入正弦信号幅值为30mV,电压放大倍数为30左右,输入阻抗大于1K,输出阻抗小于5.1K及通频带大于1Mhz。步骤一:绘制电路原理图单级共射放大电路电路图步骤二:对电路进行仿真1、仿真并查阅电路的静态工作点分析:由表中参数可得,其VBE=649mV、IB=25. >>
  • 来源:max.book118.com/html/2016/1111/62413352.shtm
  • 笔者近日打造了一部功放,采用了全对称互补电路结构,同时对所有元件严格配对使用,使功放的直流化有了可靠的保证。输入级为线性优异的共源共基电路,在其后由复合共射电路构成主放大级,对扩展动态和提高解析力均很有益。功率输出为三级达林顿电路,由于电流增益极高,可轻松驱动大食音箱。本机每一级电路都加有一定的本级反馈,使之尽量降低开环失真,而总体反馈仅控制在16dB左右。 调试也很简单,调VR1使第一级负载电阻2.4k压降为6V,调VR2使中点为0V,调VR3使未级每管静态电流为100mA。中功率管A1209/C291
  • 笔者近日打造了一部功放,采用了全对称互补电路结构,同时对所有元件严格配对使用,使功放的直流化有了可靠的保证。输入级为线性优异的共源共基电路,在其后由复合共射电路构成主放大级,对扩展动态和提高解析力均很有益。功率输出为三级达林顿电路,由于电流增益极高,可轻松驱动大食音箱。本机每一级电路都加有一定的本级反馈,使之尽量降低开环失真,而总体反馈仅控制在16dB左右。 调试也很简单,调VR1使第一级负载电阻2.4k压降为6V,调VR2使中点为0V,调VR3使未级每管静态电流为100mA。中功率管A1209/C291 >>
  • 来源:www.520101.com/html/sound/114407621.html
  • 精 度: ≤±1%FS(重复性+迟滞) 长期稳定性: ≤±0.5%FS/年 供电电源: (18~24)VDC 最大功耗: ≤1W 触点负载能力:250VAC/3A,30VDC/5A 触点寿命: >100000次 使用温度: -10~80 存贮温度: -40~100 接口材料: 不锈钢1Cr18Ni9Ti 密封垫及O形圈:氟橡胶 电 缆 线: Φ7.
  • 精 度: ≤±1%FS(重复性+迟滞) 长期稳定性: ≤±0.5%FS/年 供电电源: (18~24)VDC 最大功耗: ≤1W 触点负载能力:250VAC/3A,30VDC/5A 触点寿命: >100000次 使用温度: -10~80 存贮温度: -40~100 接口材料: 不锈钢1Cr18Ni9Ti 密封垫及O形圈:氟橡胶 电 缆 线: Φ7. >>
  • 来源:www.xnjcw.com/shop-1346352/goods-1892837.html
  • 集成运算放大器电路-集成运算放大电路分析C. 集成电路运算放大器                          模拟集成电路的分类                   模拟集成电路按功能大致可分为:   线性放大器、功率放大器、 比较器、乘法器、稳压器、(D/A 、A/D)转换器、锁相环器件等。   其中线性放大器按性能可分为通用型和专用型。 线性放大器中,发展最早、应用最广的是集成运算放大电路。图6.
  • 集成运算放大器电路-集成运算放大电路分析C. 集成电路运算放大器                          模拟集成电路的分类                   模拟集成电路按功能大致可分为:   线性放大器、功率放大器、 比较器、乘法器、稳压器、(D/A 、A/D)转换器、锁相环器件等。   其中线性放大器按性能可分为通用型和专用型。 线性放大器中,发展最早、应用最广的是集成运算放大电路。图6. >>
  • 来源:www.chinabaike.com/t/9642/2014/0623/2538313.html