• 第1章 PSpice简介 第2章 PSpice概述 2.1 PSpice的基本组成 2.2 应用实例 2.3 电路文件的格式 2.4 电路的描述语句 2.4.1 节点 2.4.2 电路元件 2.4.3 元件值 2.4.4 元件模型 2.4.5 电源和信号源 2.4.6 分析类型 2.4.7 注释语句 2.4.8 输出变量 2.4.9 输出命令 2.4.10 输出文件的格式 第3章 特性分析 3.
  • 第1章 PSpice简介 第2章 PSpice概述 2.1 PSpice的基本组成 2.2 应用实例 2.3 电路文件的格式 2.4 电路的描述语句 2.4.1 节点 2.4.2 电路元件 2.4.3 元件值 2.4.4 元件模型 2.4.5 电源和信号源 2.4.6 分析类型 2.4.7 注释语句 2.4.8 输出变量 2.4.9 输出命令 2.4.10 输出文件的格式 第3章 特性分析 3. >>
  • 来源:detail.bookuu.com/0975252.html
  • 点击图片放大 图 1 将散热容加到 DC 电气模拟电路上   在本《电源设计小贴士》中,我们将最终对一种估算热插拔 MOSFET 温升的简单方法进行研究。在《电源设计小贴士28》中,我们讨论了如何设计温升问题的电路类似方法。我们把热源建模成了电流源。根据系统组件的物理属性,计算得到热阻和热容。遍及整个网络的各种电压代表各个温度。   本文中,我们把图 1 所示模型的瞬态响应与图 3 所示公开刊发的安全工作区域(SOA 曲线)部分进行了对比。   根据 CSD17312Q5 MOSFET、引线框以及贴装
  • 点击图片放大 图 1 将散热容加到 DC 电气模拟电路上   在本《电源设计小贴士》中,我们将最终对一种估算热插拔 MOSFET 温升的简单方法进行研究。在《电源设计小贴士28》中,我们讨论了如何设计温升问题的电路类似方法。我们把热源建模成了电流源。根据系统组件的物理属性,计算得到热阻和热容。遍及整个网络的各种电压代表各个温度。   本文中,我们把图 1 所示模型的瞬态响应与图 3 所示公开刊发的安全工作区域(SOA 曲线)部分进行了对比。   根据 CSD17312Q5 MOSFET、引线框以及贴装 >>
  • 来源:www.powersystemsdesignchina.com/Departments/Technical-Features/874.html
  • 1 引 言 蓄电池正常充电时,比较好的充电方法是分级定流方式,即在充电初期用较大的恒定电流,充到一定时间或蓄电池达到一定电压后,改用较小的恒定电流充电。同时蓄电池恒流充电电源不同于普通的直流电源,它的工作负载范围非常宽,其输出电压可能从近似为零变到额定值。因此,在较宽的负载范围内保证蓄电池充电阶段的平滑过渡,以及不同阶段时的恒流特性是蓄电池恒流充电电源的设计难点。这里设计的基于DSP 变参数积分分离PI 调节的两级恒流充电电源可方便地解决这一难题。 2 系统结构及工作原理 图1 示出蓄电池恒流充电电源的结
  • 1 引 言 蓄电池正常充电时,比较好的充电方法是分级定流方式,即在充电初期用较大的恒定电流,充到一定时间或蓄电池达到一定电压后,改用较小的恒定电流充电。同时蓄电池恒流充电电源不同于普通的直流电源,它的工作负载范围非常宽,其输出电压可能从近似为零变到额定值。因此,在较宽的负载范围内保证蓄电池充电阶段的平滑过渡,以及不同阶段时的恒流特性是蓄电池恒流充电电源的设计难点。这里设计的基于DSP 变参数积分分离PI 调节的两级恒流充电电源可方便地解决这一难题。 2 系统结构及工作原理 图1 示出蓄电池恒流充电电源的结 >>
  • 来源:www.shoukehuji.com.cn/a/qianrushi/DSP_FPGAjishu/2013/0113/15773.html
  • QuikSep Auto全自动桌面层析系统 产品介绍 QuikSep Auto系列全自动桌面层析系统具有自动化程度高,可进行密集的程序化方法探索,软件功能强大,硬件支持多路溶剂、样品及层析柱,适用于蛋白、疫苗、血液制品、单抗等生物制品及多糖、天然产物等的纯化工艺开发、样品制备  系统PID图  产品特点 1、双柱塞泵,精度高; 2、A泵入口最多可达8路缓冲液; 3、配备2个气泡感应器; 4、可以自动从8个样品管中上样至定量环或者超级定量环中; 5、全自动进样阀门; 6、全自动柱流向切换阀门,可实现层析柱正
  • QuikSep Auto全自动桌面层析系统 产品介绍 QuikSep Auto系列全自动桌面层析系统具有自动化程度高,可进行密集的程序化方法探索,软件功能强大,硬件支持多路溶剂、样品及层析柱,适用于蛋白、疫苗、血液制品、单抗等生物制品及多糖、天然产物等的纯化工艺开发、样品制备 系统PID图 产品特点 1、双柱塞泵,精度高; 2、A泵入口最多可达8路缓冲液; 3、配备2个气泡感应器; 4、可以自动从8个样品管中上样至定量环或者超级定量环中; 5、全自动进样阀门; 6、全自动柱流向切换阀门,可实现层析柱正 >>
  • 来源:prep-hplc.com/news/view/127.html
  • 概述 本文介绍采用PFC控制器CM6807和谐振半桥控制器CM6900的350W高效(》90%)高功率因数(》0.95)LED照明电源解决方案。该方案适用于直至1kW的电源供应器,可用于LED照明、LED路灯、大型LED看板和大功率体育场馆照明等。 美国能源之星等规范要求在任何功率电平上的离线式(off-line)LED照明电源具有高功率因数和高能效。对于普通照明用低功率LED驱动电源,采用基于专用控制器IC的单级功率因数校正(PFC)反激式电路拓扑是最基本的解决方案。这种拓扑结构的特点是只使用一个功率
  • 概述 本文介绍采用PFC控制器CM6807和谐振半桥控制器CM6900的350W高效(》90%)高功率因数(》0.95)LED照明电源解决方案。该方案适用于直至1kW的电源供应器,可用于LED照明、LED路灯、大型LED看板和大功率体育场馆照明等。 美国能源之星等规范要求在任何功率电平上的离线式(off-line)LED照明电源具有高功率因数和高能效。对于普通照明用低功率LED驱动电源,采用基于专用控制器IC的单级功率因数校正(PFC)反激式电路拓扑是最基本的解决方案。这种拓扑结构的特点是只使用一个功率 >>
  • 来源:www.zhel.com.cn/hydt/603.html
  • 图 3 利用升压电源提高 LED 驱动器效率   图 4 为图 1-2 示意图所描述电源的照片。即使这种电源产生的输出功率大致相同,但也存在一些影响电源尺寸的明显差异。升压电源的电感器尺寸明显更小,因为其蓄能要求更低。相比升压电源,降压电源有一个更大的电阻器。该电阻器为一个仿真负载电阻器(图 2 所示 R20),用于决定调光器何时开启硅控整流器 (SCR)。需要这样做的原因是,调光器在三端双向可控硅开关组件旁边有一个电磁干扰 (EMI) 抑制电容器,其在无负载情况下的电压相对电源要高。这样便扰乱了电源,
  • 图 3 利用升压电源提高 LED 驱动器效率   图 4 为图 1-2 示意图所描述电源的照片。即使这种电源产生的输出功率大致相同,但也存在一些影响电源尺寸的明显差异。升压电源的电感器尺寸明显更小,因为其蓄能要求更低。相比升压电源,降压电源有一个更大的电阻器。该电阻器为一个仿真负载电阻器(图 2 所示 R20),用于决定调光器何时开启硅控整流器 (SCR)。需要这样做的原因是,调光器在三端双向可控硅开关组件旁边有一个电磁干扰 (EMI) 抑制电容器,其在无负载情况下的电压相对电源要高。这样便扰乱了电源, >>
  • 来源:www.cnledw.com/tech/detail-26831.htm
  • 将交流市电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源. 采用电容降压时应注意以下几点: 1 根据负载的电流大小和交流电的工作频率选取适当的电容,而不是依据负载的电压和功率. 2 限流电容必须采用无极性电容,绝对不能采用电解电容.
  • 将交流市电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源. 采用电容降压时应注意以下几点: 1 根据负载的电流大小和交流电的工作频率选取适当的电容,而不是依据负载的电压和功率. 2 限流电容必须采用无极性电容,绝对不能采用电解电容. >>
  • 来源:blog.sina.com.cn/s/blog_149f042570102vrw1.html
  • 本文设计的多路隔离输出反激式变换器,输入为144V汽车用电池,输出为1路+5V/0.5A用于继电器供电,1路+5V/1A用于DSP等芯片的供电,1路+15V/0.5A用于光电编码器,1路15V/1A用于A/D采集,4路隔离+15V/0.3A用于IPM驱动供电。设计原理图如图2所示。  图2 开关电源原理图 3.1 电源电路的工作原理 如图2所示,直流电压经L12共模抑制及电容C54、C55 滤波后提供系统工作电压。此工作电压经R1给C1充电,由于UC3843的启动电压为8.
  • 本文设计的多路隔离输出反激式变换器,输入为144V汽车用电池,输出为1路+5V/0.5A用于继电器供电,1路+5V/1A用于DSP等芯片的供电,1路+15V/0.5A用于光电编码器,1路15V/1A用于A/D采集,4路隔离+15V/0.3A用于IPM驱动供电。设计原理图如图2所示。 图2 开关电源原理图 3.1 电源电路的工作原理 如图2所示,直流电压经L12共模抑制及电容C54、C55 滤波后提供系统工作电压。此工作电压经R1给C1充电,由于UC3843的启动电压为8. >>
  • 来源:www.szsyb.com/ch/NewsView.asp?ID=18
  •   图 2 显示了一个通过 120 伏 AC 电源为 LED 供电的非隔离式电路。它包含一个为降压功率级供电的整流桥。该降压调节器是一个"倒置版",其电源开关 Q2 处在回路中,而环流二极管 D3 连接至电源。在电源开关导通期间,通过一个源电阻对电流进行调节。尽管这样做的效率相当高(80%-90%),但是这种电路存在几个限制效率的缺点。导通时,电源开关必须承载全部输出电流,而在电源开关关闭时,输出电流流过环流二极管。另外,电流检测电阻器 R8 和 R10 的电压约为 1 伏。相比 15
  •   图 2 显示了一个通过 120 伏 AC 电源为 LED 供电的非隔离式电路。它包含一个为降压功率级供电的整流桥。该降压调节器是一个"倒置版",其电源开关 Q2 处在回路中,而环流二极管 D3 连接至电源。在电源开关导通期间,通过一个源电阻对电流进行调节。尽管这样做的效率相当高(80%-90%),但是这种电路存在几个限制效率的缺点。导通时,电源开关必须承载全部输出电流,而在电源开关关闭时,输出电流流过环流二极管。另外,电流检测电阻器 R8 和 R10 的电压约为 1 伏。相比 15 >>
  • 来源:www.zhlysz.com/c_html_news/dianyuanshejixiao-shiyonggaoyaledtigaodengpaoxiaolv-1247.html
  • 硬件设计 电路原理见图1。Xx8位数据线接4x4键盘矩阵电路,面板布局见表1,A、B、C、D为备用功能键。RA0、RA7输出4组编码二进制数据,经74LS139译码后输出逐行扫描信号,送RB4-RB7列信号输入端。余下半个139译码器动扬声器。RB2接中功率三极管基极,驱动继电器动作。有效密码长度为4位,根据实际情况,可通过修改源程序增加密码位数。产品初始密码为3345,这是一随机数,无特殊意义,目的是为防止被套解。用户可按*号键修改密码,按#号键结束。输入密码并按#号确认之后,脚输出RB2脚输出高电平,
  • 硬件设计 电路原理见图1。Xx8位数据线接4x4键盘矩阵电路,面板布局见表1,A、B、C、D为备用功能键。RA0、RA7输出4组编码二进制数据,经74LS139译码后输出逐行扫描信号,送RB4-RB7列信号输入端。余下半个139译码器动扬声器。RB2接中功率三极管基极,驱动继电器动作。有效密码长度为4位,根据实际情况,可通过修改源程序增加密码位数。产品初始密码为3345,这是一随机数,无特殊意义,目的是为防止被套解。用户可按*号键修改密码,按#号键结束。输入密码并按#号确认之后,脚输出RB2脚输出高电平, >>
  • 来源:www.51hei.com/bbs/forum.php?mod=viewthread&tid=56863&from=album
  •   3.2 调整管的选取与静态工作点的设置   调整管VQ1和VQ2主要参数:(1)反向电压VCEO不小于Vin的2 倍的裕量;(2)最大允许电流ICM,不小于输出电流I0的2倍的裕量;(3)耗散功率PCM应在功率损耗的安全区内;通常为了安全可靠,参数应按照实际值的几倍选取。设置适当的静态工作点(即确定基极静态电流Ih,发射极电流Ie,集电极一发射极静态电压Uce),可以在保证输出稳定精度的同时使调整管的损耗最小。合适的静态工作点首先要求调整管工作在放大状态,其次要满足电网和负载波动情况下,Ib、Ie、U
  •   3.2 调整管的选取与静态工作点的设置   调整管VQ1和VQ2主要参数:(1)反向电压VCEO不小于Vin的2 倍的裕量;(2)最大允许电流ICM,不小于输出电流I0的2倍的裕量;(3)耗散功率PCM应在功率损耗的安全区内;通常为了安全可靠,参数应按照实际值的几倍选取。设置适当的静态工作点(即确定基极静态电流Ih,发射极电流Ie,集电极一发射极静态电压Uce),可以在保证输出稳定精度的同时使调整管的损耗最小。合适的静态工作点首先要求调整管工作在放大状态,其次要满足电网和负载波动情况下,Ib、Ie、U >>
  • 来源:www.eefocus.com/article/11-11/2287011320813800_2.html?sort=1929_1931_1932_0
  •   其基本工作原理如下:   当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定的移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。   由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关
  •   其基本工作原理如下:   当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定的移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。   由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关 >>
  • 来源:ec.csc86.com/jishu/wenku/2013/1216/194.html
  •   一、有机废气处理现状   1.有机废气的分布范围   有机溶剂在工业生产应用相当的广泛,如:化工厂,电子厂,印刷厂,橡胶厂,涂料厂,石化行业,家具、汽车、金属加工、纺织品等。主要污染物有苯类,酮类,醇类,醚类,酯类等有机溶剂,大量的挥发性气体排放,对环境构成极大的威胁,只有合理的回收利用才能做到真正的工业生产的节能环保,才能实现可持续发展的工业化道路。   2.
  •   一、有机废气处理现状   1.有机废气的分布范围   有机溶剂在工业生产应用相当的广泛,如:化工厂,电子厂,印刷厂,橡胶厂,涂料厂,石化行业,家具、汽车、金属加工、纺织品等。主要污染物有苯类,酮类,醇类,醚类,酯类等有机溶剂,大量的挥发性气体排放,对环境构成极大的威胁,只有合理的回收利用才能做到真正的工业生产的节能环保,才能实现可持续发展的工业化道路。   2. >>
  • 来源:www.ehuanbao.net/news/15890.html
  • 看到春风大侠和前方大侠做的数控电源, 也很想自己动手做一个, 于是从网上找来一些电路, 将其中的单片机改为 PIC18F4520(本人比较熟悉PIC单片机), 做了一个数控电源,不过这个数控电源, 只能说是数控电源理论联系实际的一个 电路验证实验, 缺少了电源的很多其他功能, 没法和各位大侠的电源相提并论较.
  • 看到春风大侠和前方大侠做的数控电源, 也很想自己动手做一个, 于是从网上找来一些电路, 将其中的单片机改为 PIC18F4520(本人比较熟悉PIC单片机), 做了一个数控电源,不过这个数控电源, 只能说是数控电源理论联系实际的一个 电路验证实验, 缺少了电源的很多其他功能, 没法和各位大侠的电源相提并论较. >>
  • 来源:www.amobbs.com/thread-4063477-1-1.html
  • 摘要:简述了TOPSwitch的工作原理,分析了基于TOPSwitch的反激式DC/DC电源的工作过程,并通过设计一个输入宽电压范围、输出电压15V、输出功率40W的电源来给出设计过程中各主要参数的确定方法。这对于简化直流源的设计过程,提高设计效率有重要意义。实验结果证明该设计方法是可行的。 关键词:TOPSwitch芯片;反激式;断续模式;连续模式 引言   在实验过程中常要用到各种直流电源。由于直流源的设计包括模拟、数字电路设计、功率开关管选取、电感绕制、工作温度、安全性、控制环的稳定性等一系列问题,
  • 摘要:简述了TOPSwitch的工作原理,分析了基于TOPSwitch的反激式DC/DC电源的工作过程,并通过设计一个输入宽电压范围、输出电压15V、输出功率40W的电源来给出设计过程中各主要参数的确定方法。这对于简化直流源的设计过程,提高设计效率有重要意义。实验结果证明该设计方法是可行的。 关键词:TOPSwitch芯片;反激式;断续模式;连续模式 引言   在实验过程中常要用到各种直流电源。由于直流源的设计包括模拟、数字电路设计、功率开关管选取、电感绕制、工作温度、安全性、控制环的稳定性等一系列问题, >>
  • 来源:www.laogu.com/cms/xw_122381.htm
  •   通过上述理论分析,推出控制量u ( k) 的数学表达式为:      式中 ---积分门限。   e( k) ---误差的变化量, e( k) = e ( k) - e ( k - 1)。      图3 控制系统原理方框图   图3 示出控制系统原理方框图。与DSP 的T1PINT 周期同步的电流A/ D 采样,将测得的电流平均值作为反馈值I F参予电流调节器的运算。经过变参数的积分分离PI 计算,调节驱动高频逆变电路中开关管的驱动信号,从而调节充电电流保持恒定。   4 软件设计   图4
  •   通过上述理论分析,推出控制量u ( k) 的数学表达式为:      式中 ---积分门限。   e( k) ---误差的变化量, e( k) = e ( k) - e ( k - 1)。      图3 控制系统原理方框图   图3 示出控制系统原理方框图。与DSP 的T1PINT 周期同步的电流A/ D 采样,将测得的电流平均值作为反馈值I F参予电流调节器的运算。经过变参数的积分分离PI 计算,调节驱动高频逆变电路中开关管的驱动信号,从而调节充电电流保持恒定。   4 软件设计   图4 >>
  • 来源:www.shoukehuji.com.cn/a/qianrushi/DSP_FPGAjishu/2013/0113/15773_2.html
  • 引言   在各种电子电路实验中,电源是一种必不可少的仪器,目前实验所用的电源大多是只有固定电压输出(例如常用的有: ±5V、±12V或±15V) ,其缺点是输出电压不可人为的改变,输出精度和稳定性都不高:在测量上,传统的电源一般采用指针式或数字式来显示电压或电流,搭配电位器调整所要的电压及电流输出值。 若要调整精确的电压输出,须搭配精确的显示仪表监测:又因电位器的阻值特性非线性,在调整时,需要花费一定的时间,且会产生漂移,使得最终只好因陋就简。 随着科学技术飞速发展,对电源可
  • 引言   在各种电子电路实验中,电源是一种必不可少的仪器,目前实验所用的电源大多是只有固定电压输出(例如常用的有: ±5V、±12V或±15V) ,其缺点是输出电压不可人为的改变,输出精度和稳定性都不高:在测量上,传统的电源一般采用指针式或数字式来显示电压或电流,搭配电位器调整所要的电压及电流输出值。 若要调整精确的电压输出,须搭配精确的显示仪表监测:又因电位器的阻值特性非线性,在调整时,需要花费一定的时间,且会产生漂移,使得最终只好因陋就简。 随着科学技术飞速发展,对电源可 >>
  • 来源:www.eaw.com.cn/news/techdisplay/article/17264