• 对于表1中第4种情况,如果交流UPS系统的蓄电池组有中心抽头连接中性线且与保护地线有连接或呈低阻状态,则需要将蓄电池架进行对地绝缘处理,或利用蓄电池组的近端保护开关将蓄电池组的中间抽头与UPS系统分离。在蓄电池架不接地的情况下,即可按照表1中第1、2种情况来判断。如图6所示。
  • 对于表1中第4种情况,如果交流UPS系统的蓄电池组有中心抽头连接中性线且与保护地线有连接或呈低阻状态,则需要将蓄电池架进行对地绝缘处理,或利用蓄电池组的近端保护开关将蓄电池组的中间抽头与UPS系统分离。在蓄电池架不接地的情况下,即可按照表1中第1、2种情况来判断。如图6所示。 >>
  • 来源:www.d1net.com/datacenter/news/430919.html
  • 单电源,同向放大接法, 可以把双电源的GND理解为 vcc/2, 负电源理解为地。同时,在同向输入端,如果有隔直电容串接,要并一个电阻到 vcc/2 以形成泄放回路,否则电容上的电荷只充不放(运放输入端高阻),高居不下,放大器输出端直接憋到vcc。
  • 单电源,同向放大接法, 可以把双电源的GND理解为 vcc/2, 负电源理解为地。同时,在同向输入端,如果有隔直电容串接,要并一个电阻到 vcc/2 以形成泄放回路,否则电容上的电荷只充不放(运放输入端高阻),高居不下,放大器输出端直接憋到vcc。 >>
  • 来源:www.ibox123.com/opbox/sx3_463.html
  • &nbsp;TI FAE 你好,请问下使用附件所示的TI的示例电路,对系统进行供电,当负载接近2A或以上,会对电池的充电产生影响么,或说会不会出现电池的充电电流全部流向负载而不对电池充电么。</p> <p><a href="/cfs-file.ashx/__key/communityserver-discussions-components-files/35/6507.
  • &nbsp;TI FAE 你好,请问下使用附件所示的TI的示例电路,对系统进行供电,当负载接近2A或以上,会对电池的充电产生影响么,或说会不会出现电池的充电电流全部流向负载而不对电池充电么。</p> <p><a href="/cfs-file.ashx/__key/communityserver-discussions-components-files/35/6507. >>
  • 来源:www.deyisupport.com/question_answer/analog/battery_management/f/35/p/120475/334515.aspx
  • 单电源,同向放大接法, 可以把双电源的GND理解为 vcc/2, 负电源理解为地。同时,在同向输入端,如果有隔直电容串接,要并一个电阻到 vcc/2 以形成泄放回路,否则电容上的电荷只充不放(运放输入端高阻),高居不下,放大器输出端直接憋到vcc。
  • 单电源,同向放大接法, 可以把双电源的GND理解为 vcc/2, 负电源理解为地。同时,在同向输入端,如果有隔直电容串接,要并一个电阻到 vcc/2 以形成泄放回路,否则电容上的电荷只充不放(运放输入端高阻),高居不下,放大器输出端直接憋到vcc。 >>
  • 来源:ibox123.com/opbox/sx3_463.html
  • 分享 QQ空间 新浪微博 腾讯微博 人人网 [导读] 解决的方法是可以使用交流耦合,如下图 使用交流耦合的AD8137放大电路 这样,输入端和输出端的范围都正确了。结果如下图所示 采用交流耦合后正确的结 关键词:电路增益AD813x差分放大器 解决的方法是可以使用交流耦合,如下图  使用交流耦合的AD8137放大电路 这样,输入端和输出端的范围都正确了。结果如下图所示  采用交流耦合后正确的结果 所以在使用AD813x时,一定要先计算各点的电压,然后与数据手册上相同供电电源电压条件下的指标相比较,确定电路
  • 分享 QQ空间 新浪微博 腾讯微博 人人网 [导读] 解决的方法是可以使用交流耦合,如下图 使用交流耦合的AD8137放大电路 这样,输入端和输出端的范围都正确了。结果如下图所示 采用交流耦合后正确的结 关键词:电路增益AD813x差分放大器 解决的方法是可以使用交流耦合,如下图 使用交流耦合的AD8137放大电路 这样,输入端和输出端的范围都正确了。结果如下图所示 采用交流耦合后正确的结果 所以在使用AD813x时,一定要先计算各点的电压,然后与数据手册上相同供电电源电压条件下的指标相比较,确定电路 >>
  • 来源:www.chemdy.com/info/9-18901.html
  • 斯巴克SPARK 734A合并胆机功放,红色限量版,成色如图约九成新,全正常无修,无暗病,功率输出42W,6N11管4个,EL-34管4个,12AU7管2个,机器用料很足,也很重,整体布局合理,比现在新出的斯巴克EL34胆机体积几乎大一倍,输入级采用环牛,输出级用EI牛,全机有四只巨牛。电源部分采用FOR AUDIO 的四只大电容做水塘(现在的斯巴克只用两只),供电非常威猛。两只6922做SRPP前级放大,丝毫没有省略前级放大电路(现在的斯巴克已经省去好多前级部分的用料)。输入端子,输出端子保护得不错的。
  • 斯巴克SPARK 734A合并胆机功放,红色限量版,成色如图约九成新,全正常无修,无暗病,功率输出42W,6N11管4个,EL-34管4个,12AU7管2个,机器用料很足,也很重,整体布局合理,比现在新出的斯巴克EL34胆机体积几乎大一倍,输入级采用环牛,输出级用EI牛,全机有四只巨牛。电源部分采用FOR AUDIO 的四只大电容做水塘(现在的斯巴克只用两只),供电非常威猛。两只6922做SRPP前级放大,丝毫没有省略前级放大电路(现在的斯巴克已经省去好多前级部分的用料)。输入端子,输出端子保护得不错的。 >>
  • 来源:www.go007.com/yancheng/guyongdianqi/df46bea13997b8ba.htm
  •   电感滤波电路的原理也和电容器滤波差不多,也是因为电感器的通直阻交特性和储能特性。从储能方面来解释的话和电容器是一样的原理,从通直阻交特性方面来解释电感器的滤波电路时,电感器是把单向脉动性直流电压分解出来的交流电压部分进行阻碍,而电容器却是短路接地。电感量越大滤波效果越好,由电感器单独作滤波电路的情况很少,一般会和电容一起组合使用。   3.
  •   电感滤波电路的原理也和电容器滤波差不多,也是因为电感器的通直阻交特性和储能特性。从储能方面来解释的话和电容器是一样的原理,从通直阻交特性方面来解释电感器的滤波电路时,电感器是把单向脉动性直流电压分解出来的交流电压部分进行阻碍,而电容器却是短路接地。电感量越大滤波效果越好,由电感器单独作滤波电路的情况很少,一般会和电容一起组合使用。   3. >>
  • 来源:www.dzsc.com/data/Circuit-51709.html
  • 有一个0~5V变化的直流电压信号需要被ADC采集,我加了一个电压跟随器,可是板子上只有单电源,除了使用rail-to-rail的运放之外,只能在普通运放的正端加偏置电压了,可是这样的话输入信号就和这个偏置电压(这里用的是6V)直连了,总感觉有点怪怪的,还请各位大侠给指教下 另外,我在一些资料上看到单电源供电的运放电路,在输出端串联一个电容就可以去掉加在运放正端的偏置电压,这个该怎么理解呢?比如我这样的一个电路,如果没有串电容,输出的电压变化范围是不是6V~11V,串上电容后就变成0V~5V了呢?这个电容该
  • 有一个0~5V变化的直流电压信号需要被ADC采集,我加了一个电压跟随器,可是板子上只有单电源,除了使用rail-to-rail的运放之外,只能在普通运放的正端加偏置电压了,可是这样的话输入信号就和这个偏置电压(这里用的是6V)直连了,总感觉有点怪怪的,还请各位大侠给指教下 另外,我在一些资料上看到单电源供电的运放电路,在输出端串联一个电容就可以去掉加在运放正端的偏置电压,这个该怎么理解呢?比如我这样的一个电路,如果没有串电容,输出的电压变化范围是不是6V~11V,串上电容后就变成0V~5V了呢?这个电容该 >>
  • 来源:www.amobbs.com/thread-4736487-1-1.html
  • 有一个0~5V变化的直流电压信号需要被ADC采集,我加了一个电压跟随器,可是板子上只有单电源,除了使用rail-to-rail的运放之外,只能在普通运放的正端加偏置电压了,可是这样的话输入信号就和这个偏置电压(这里用的是6V)直连了,总感觉有点怪怪的,还请各位大侠给指教下 另外,我在一些资料上看到单电源供电的运放电路,在输出端串联一个电容就可以去掉加在运放正端的偏置电压,这个该怎么理解呢?比如我这样的一个电路,如果没有串电容,输出的电压变化范围是不是6V~11V,串上电容后就变成0V~5V了呢?这个电容该
  • 有一个0~5V变化的直流电压信号需要被ADC采集,我加了一个电压跟随器,可是板子上只有单电源,除了使用rail-to-rail的运放之外,只能在普通运放的正端加偏置电压了,可是这样的话输入信号就和这个偏置电压(这里用的是6V)直连了,总感觉有点怪怪的,还请各位大侠给指教下 另外,我在一些资料上看到单电源供电的运放电路,在输出端串联一个电容就可以去掉加在运放正端的偏置电压,这个该怎么理解呢?比如我这样的一个电路,如果没有串电容,输出的电压变化范围是不是6V~11V,串上电容后就变成0V~5V了呢?这个电容该 >>
  • 来源:www.amobbs.com/thread-4736487-1-1.html
  • 【注意事项】 [1].TDA2030A具有负载泄放电压反冲保护电路,如果电源电压峰值电压40V的话,那么在5脚与电源之间必须插入LC滤波器,二极管限压(5脚因为任何原因产生了高压,一般是喇叭的线圈电感作用,使电压等于电源的电压)以保证5脚上的脉冲串维持在规定的幅度内。 [2].热保护:限热保护有以下优点,能够容易承受输出的过载(甚至是长时间的),或者环境温度超过时均起保护作用。 [3].
  • 【注意事项】 [1].TDA2030A具有负载泄放电压反冲保护电路,如果电源电压峰值电压40V的话,那么在5脚与电源之间必须插入LC滤波器,二极管限压(5脚因为任何原因产生了高压,一般是喇叭的线圈电感作用,使电压等于电源的电压)以保证5脚上的脉冲串维持在规定的幅度内。 [2].热保护:限热保护有以下优点,能够容易承受输出的过载(甚至是长时间的),或者环境温度超过时均起保护作用。 [3]. >>
  • 来源:www.1mayi.com/3227.html/2
  • HQ 话放/DAC/监听控制器 Drawmer HQ 是一款精密的监听控制器,也可以做为一款前极,更可以充当一台优秀的DAC。也许无论您是在专业的录音棚,或者民用HIFI领域,都会看到它的出现。做为一家英国有三十多年历史的老厂家,这款旗舰产品功能丰富,拥有众多接口,方便您与各种周边设备的连接。 [[img ALT="" src="http://simg.
  • HQ 话放/DAC/监听控制器 Drawmer HQ 是一款精密的监听控制器,也可以做为一款前极,更可以充当一台优秀的DAC。也许无论您是在专业的录音棚,或者民用HIFI领域,都会看到它的出现。做为一家英国有三十多年历史的老厂家,这款旗舰产品功能丰富,拥有众多接口,方便您与各种周边设备的连接。 [[img ALT="" src="http://simg. >>
  • 来源:blog.sina.com.cn/s/blog_4b3bbb760102veb0.html
  • ZS声卡上应用就非常成功,使这块中档声卡有比试高级声卡的实力! 近段时间身边几个朋友玩了音响又开始迷上了磨机换运放,CD机、功放,连电脑上声卡也弄个827、275什么的。所以周末,特意去拿了堆运放回来测试,简单谈谈感受吧。 NE5532: 确实有点胆味,解析力一般,高频比较燥,低频比较糊且肥。价廉物美足已弥补一切!
  • ZS声卡上应用就非常成功,使这块中档声卡有比试高级声卡的实力! 近段时间身边几个朋友玩了音响又开始迷上了磨机换运放,CD机、功放,连电脑上声卡也弄个827、275什么的。所以周末,特意去拿了堆运放回来测试,简单谈谈感受吧。 NE5532: 确实有点胆味,解析力一般,高频比较燥,低频比较糊且肥。价廉物美足已弥补一切! >>
  • 来源:www.360doc.com/content/16/0103/12/19122914_525113432.shtml
  • 能 力 目 标 重点掌握场效应管放大电路的结构及功能特点,能够正确分析和识读放大电路中各种关键元器件的作用以及信号经过放大电路后的输出状态,并且可以灵活运用到实际电子产品电路中,能够正确分析其功能及作用范围。 5.2.1 场效应管放大电路的基本结构 场效应管与晶体管一样,也具有放大作用,但与普通晶体管是电流控制型器件相反,场效应管是电压控制型器件。它具有输入阻抗高、噪声低的特点。 场效应管的3个电极,即栅极、源极和漏极分别相当于晶体管的基极、发射极和集电极。图5-21所示是场效应管的3种组态电路,即共源极
  • 能 力 目 标 重点掌握场效应管放大电路的结构及功能特点,能够正确分析和识读放大电路中各种关键元器件的作用以及信号经过放大电路后的输出状态,并且可以灵活运用到实际电子产品电路中,能够正确分析其功能及作用范围。 5.2.1 场效应管放大电路的基本结构 场效应管与晶体管一样,也具有放大作用,但与普通晶体管是电流控制型器件相反,场效应管是电压控制型器件。它具有输入阻抗高、噪声低的特点。 场效应管的3个电极,即栅极、源极和漏极分别相当于晶体管的基极、发射极和集电极。图5-21所示是场效应管的3种组态电路,即共源极 >>
  • 来源:gumubook.eefocus.com/book/09-03/8331406010345.html
  • 图3.HMC1118评估板原理图 小信号性能 HMC1118针对50 系统提供最优小信号性能。当VSS从2.5 V变为0 V时,对于RF小输入信号,其足以使FET保持关断状态,HMC1118的小信号RF性能不会下降。整个工作频率范围内的回波损耗、插入损耗和隔离度都得到保持,如图4、图5和图6所示。
  • 图3.HMC1118评估板原理图 小信号性能 HMC1118针对50 系统提供最优小信号性能。当VSS从2.5 V变为0 V时,对于RF小输入信号,其足以使FET保持关断状态,HMC1118的小信号RF性能不会下降。整个工作频率范围内的回波损耗、插入损耗和隔离度都得到保持,如图4、图5和图6所示。 >>
  • 来源:www.chemdy.com/info/9-19222.html
  • 家里的加湿器出了点问题,在网上学习一番,也提供给大家! 加湿器在冬季取暖的北方越来越受到欢迎,维修量也随之增加。本文提供几种常见机型电路图并就其基本原理和维修方法介绍如下:&qH;P [ g-b8b$@!r#g)N 加湿器基本结构如图一所示,由电源电路、控制电路、振荡电路与风机和换能器(压电陶瓷片)组成。电源部分有两种供电方式,一种是变压器降压整流滤波后为振荡电路供电,如图二ZS2-45型。因变压器过载能力强而被广泛机型采用。另一种是由开关电源供电,特点是重量明显减小,电源效率高,如图三半球牌CJ
  • 家里的加湿器出了点问题,在网上学习一番,也提供给大家! 加湿器在冬季取暖的北方越来越受到欢迎,维修量也随之增加。本文提供几种常见机型电路图并就其基本原理和维修方法介绍如下:&qH;P [ g-b8b$@!r#g)N 加湿器基本结构如图一所示,由电源电路、控制电路、振荡电路与风机和换能器(压电陶瓷片)组成。电源部分有两种供电方式,一种是变压器降压整流滤波后为振荡电路供电,如图二ZS2-45型。因变压器过载能力强而被广泛机型采用。另一种是由开关电源供电,特点是重量明显减小,电源效率高,如图三半球牌CJ >>
  • 来源:wenda.chinabaike.com/b/38274/2013/1103/610516.html
  • 图1   图2   图3 图1所示首先由提供了一种采用单片机的直流电机控制装置,包括单片机核心控制器模块、PWM调制模块以及保护电路模块。为系统供电的交流电源经直流适配模块后变成24V稳压直流电,单片机核心控制器配合PWM调制模块通过晶体管调压模块将该直流电调制无刷直流电机运行所需的  驱动电压。其中单片机核心控制器模块与驱动晶体管之间连接着保护电路模块,主要为了防止功率器件被损坏。单片机核心控制器模块还与数字编码器的飞梭相连,用于确认电动机的调节状态。 图2所示,数字编码器在完成后就将对应的脉冲输
  • 图1 图2 图3 图1所示首先由提供了一种采用单片机的直流电机控制装置,包括单片机核心控制器模块、PWM调制模块以及保护电路模块。为系统供电的交流电源经直流适配模块后变成24V稳压直流电,单片机核心控制器配合PWM调制模块通过晶体管调压模块将该直流电调制无刷直流电机运行所需的 驱动电压。其中单片机核心控制器模块与驱动晶体管之间连接着保护电路模块,主要为了防止功率器件被损坏。单片机核心控制器模块还与数字编码器的飞梭相连,用于确认电动机的调节状态。 图2所示,数字编码器在完成后就将对应的脉冲输 >>
  • 来源:www.wxjy.com.cn/Item/158412.aspx
  • 一、 产品介绍 本产品基于目前大力倡导的节能减排战略目标,充分利用本公司的无线组网通信技术,实现了自动化、远程无人值守方式下的路灯智能化全控。本系统由后台集中管理系统、集中器、单/双灯控制器组成,其借助于远程无线通信公网、的智能化自组织无线区域网络可进一步实现全区、全市、全省级别的统一管理,使集中监控、分级管理成为可能。是对新建工程、已有工程实施低成本、高可靠网络化统一管理,实现智能照明、能耗精准统计的利器。 上海桑锐电子科技有限公司是位于上海浦东高科技园区的高新技术企业,是级、上海市重点科技成果转化项目
  • 一、 产品介绍 本产品基于目前大力倡导的节能减排战略目标,充分利用本公司的无线组网通信技术,实现了自动化、远程无人值守方式下的路灯智能化全控。本系统由后台集中管理系统、集中器、单/双灯控制器组成,其借助于远程无线通信公网、的智能化自组织无线区域网络可进一步实现全区、全市、全省级别的统一管理,使集中监控、分级管理成为可能。是对新建工程、已有工程实施低成本、高可靠网络化统一管理,实现智能照明、能耗精准统计的利器。 上海桑锐电子科技有限公司是位于上海浦东高科技园区的高新技术企业,是级、上海市重点科技成果转化项目 >>
  • 来源:www.qjy168.com/shop/p70132522