• 那么当M2再度回到最小占空比的时候,IC内部逻辑电路会认为模态需要再次转换了。此时,M2将固定在最小占空比,而M3则开始跳出最小占空比,可以逐渐展宽。理论上来说,这个过渡应该是完全无缝的切换,但是由于芯片内部的clock时序的切换,也会对输出造成一种动态效应。
  • 那么当M2再度回到最小占空比的时候,IC内部逻辑电路会认为模态需要再次转换了。此时,M2将固定在最小占空比,而M3则开始跳出最小占空比,可以逐渐展宽。理论上来说,这个过渡应该是完全无缝的切换,但是由于芯片内部的clock时序的切换,也会对输出造成一种动态效应。 >>
  • 来源:www.micrl-dsp.comcncontactliulanqi.haodewap.com/visit.do?wapurl=http://www.cntronics.com/power-art/80029460
  • 1、概述   凌力尔特(Linear Technology)推出的LTC3558型USB电池充电器,带有两个开关稳压器,适合于在手持式设备中应用。LTC3558的充电器,采用恒流/恒压算法,可以从USB电源汲取功率,也可以利用墙上AC适配器对单节锂离子/聚合物电池充电,可编程最大充电电流达950mA。LTC3558的降压开关稳压器和降压-升压开关稳压器,在2.
  • 1、概述   凌力尔特(Linear Technology)推出的LTC3558型USB电池充电器,带有两个开关稳压器,适合于在手持式设备中应用。LTC3558的充电器,采用恒流/恒压算法,可以从USB电源汲取功率,也可以利用墙上AC适配器对单节锂离子/聚合物电池充电,可编程最大充电电流达950mA。LTC3558的降压开关稳压器和降压-升压开关稳压器,在2. >>
  • 来源:www.green-charger.com/news/3cf14cc97228205f6aa8f53c29f1cada
  • 图2:升压斩波电路(Boost Chopper)原理图及波形图   如上图2:升压斩波电路原理图及波形图所示,电路也使用一个全控型器件V。由图2中V的栅极电压波形UGE可知,当V处于通态时,电源Ui向电感L1充电,充电电流基本恒定为I1,同时电容C1上的电压向负载供电,因C1值很大,基本保持输出电压UO为恒值。设V处于通态的时间为ton,此阶段电感L1上积蓄的能量为Ui*I1*ton。当V处于断态时Ui和L1共同向电容C1充电,并向负载提供能量。设V处于断态的时间为toff,则在此期间电感L1释放的能量
  • 图2:升压斩波电路(Boost Chopper)原理图及波形图   如上图2:升压斩波电路原理图及波形图所示,电路也使用一个全控型器件V。由图2中V的栅极电压波形UGE可知,当V处于通态时,电源Ui向电感L1充电,充电电流基本恒定为I1,同时电容C1上的电压向负载供电,因C1值很大,基本保持输出电压UO为恒值。设V处于通态的时间为ton,此阶段电感L1上积蓄的能量为Ui*I1*ton。当V处于断态时Ui和L1共同向电容C1充电,并向负载提供能量。设V处于断态的时间为toff,则在此期间电感L1释放的能量 >>
  • 来源:en.vfe.cc/NewsDetail-1653.aspx
  • 我们与你一起畅享IT世界!  上尉Shonway推荐 电源的拓扑有很多种,但是其实我们能够理解一种拓扑,就可以理解其他拓扑结构。因为组成各种拓扑的基本元素是一样的。  对于隔离电源。大家接触最多的电路拓扑应该是 flyback。 但是大家一开始做电源的时候,不会设计,连分析也不懂,唯一能做的是模仿(额,难听点就是抄袭了)。这样子的状态持续了一段时间后,才开始慢慢的有一些了解。但对于新手来说,如果能从基本拓扑结构BUCK、BOOST进行演变成更复杂的拓扑结构,那么我们融会贯通的理解各种拓扑结构,就变得非常容
  • 我们与你一起畅享IT世界! 上尉Shonway推荐 电源的拓扑有很多种,但是其实我们能够理解一种拓扑,就可以理解其他拓扑结构。因为组成各种拓扑的基本元素是一样的。 对于隔离电源。大家接触最多的电路拓扑应该是 flyback。 但是大家一开始做电源的时候,不会设计,连分析也不懂,唯一能做的是模仿(额,难听点就是抄袭了)。这样子的状态持续了一段时间后,才开始慢慢的有一些了解。但对于新手来说,如果能从基本拓扑结构BUCK、BOOST进行演变成更复杂的拓扑结构,那么我们融会贯通的理解各种拓扑结构,就变得非常容 >>
  • 来源:sh.qihoo.com/pc/9034b4ef997ff7fa8?sign=360_e39369d1
  • 图2:升压斩波电路(Boost Chopper)原理图及波形图   如上图2:升压斩波电路原理图及波形图所示,电路也使用一个全控型器件V。由图2中V的栅极电压波形UGE可知,当V处于通态时,电源Ui向电感L1充电,充电电流基本恒定为I1,同时电容C1上的电压向负载供电,因C1值很大,基本保持输出电压UO为恒值。设V处于通态的时间为ton,此阶段电感L1上积蓄的能量为Ui*I1*ton。当V处于断态时Ui和L1共同向电容C1充电,并向负载提供能量。设V处于断态的时间为toff,则在此期间电感L1释放的能量
  • 图2:升压斩波电路(Boost Chopper)原理图及波形图   如上图2:升压斩波电路原理图及波形图所示,电路也使用一个全控型器件V。由图2中V的栅极电压波形UGE可知,当V处于通态时,电源Ui向电感L1充电,充电电流基本恒定为I1,同时电容C1上的电压向负载供电,因C1值很大,基本保持输出电压UO为恒值。设V处于通态的时间为ton,此阶段电感L1上积蓄的能量为Ui*I1*ton。当V处于断态时Ui和L1共同向电容C1充电,并向负载提供能量。设V处于断态的时间为toff,则在此期间电感L1释放的能量 >>
  • 来源:en.vfe.cc/NewsDetail-1653.aspx
  • 1》:SG3525 1-9脚的反馈是确定芯片内部放大器增益的,如果你需要高速放大器和对带宽要求较高的场合,可以将1-9脚短路起来,用作射极跟随器使用,在1-2脚采用外部高速放大器来实现。有利于反馈速度的精准控制,俾人曾经在2000年的时候做用3525做4850的通信电源时采用过此方案,输出54.
  • 1》:SG3525 1-9脚的反馈是确定芯片内部放大器增益的,如果你需要高速放大器和对带宽要求较高的场合,可以将1-9脚短路起来,用作射极跟随器使用,在1-2脚采用外部高速放大器来实现。有利于反馈速度的精准控制,俾人曾经在2000年的时候做用3525做4850的通信电源时采用过此方案,输出54. >>
  • 来源:bbs.21dianyuan.com/thread-148459-1-1.html
  • 首先让我们从BUCK变换器的概念开始讲起,Buck变换器也称降压式变换器,是一种输出电压小于输进电压的单管不隔离直流变换器。  图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulaTION脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton Toff,占空比Dy= Ton/Ts。 开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不答应在Dy=1的状态下工作。电感Lf在输进侧,称为升压电感。Boost变换器也有CC
  • 首先让我们从BUCK变换器的概念开始讲起,Buck变换器也称降压式变换器,是一种输出电压小于输进电压的单管不隔离直流变换器。 图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulaTION脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton Toff,占空比Dy= Ton/Ts。 开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不答应在Dy=1的状态下工作。电感Lf在输进侧,称为升压电感。Boost变换器也有CC >>
  • 来源:www.23book.com/490000/489699.shtml
  • MC34063,4V~18V输入,5V, 200mA-300mA左右输出,按照应用手册AN920/D图18设计,效率只有50%,芯片和电感都比较热。目前电感用的是50KHz,220uH(怀疑较大),开关管BC807,请教DC/DC 高手给与建议:
  • MC34063,4V~18V输入,5V, 200mA-300mA左右输出,按照应用手册AN920/D图18设计,效率只有50%,芯片和电感都比较热。目前电感用的是50KHz,220uH(怀疑较大),开关管BC807,请教DC/DC 高手给与建议: >>
  • 来源:bbs.21dianyuan.com/thread-159635-1-386.html
  • 3.整流器基本原理 3.1三相全桥整流 对于中大功率UPS,早期一般采用晶闸管整流电路完成整流,该变换器由于输入电流不连续,功率因数较低,需要输入侧加LC二阶滤波器以滤除电流谐波,这就增加了变换器的体积及成本,另一种形式采用IGBT及功率二极管组成Vienna整流器拓扑结构来确保输入的高功率因数。SCR整流电路一般有6脉冲和12脉冲整流。如图3-6为SCR整流原理示意图及采用三相SCR全桥整流电路6脉冲整流器图,SCR触发脉冲顺序:1-2-3-4-5-6-1。  图3-1 6脉冲SCR全桥整流原理图 12
  • 3.整流器基本原理 3.1三相全桥整流 对于中大功率UPS,早期一般采用晶闸管整流电路完成整流,该变换器由于输入电流不连续,功率因数较低,需要输入侧加LC二阶滤波器以滤除电流谐波,这就增加了变换器的体积及成本,另一种形式采用IGBT及功率二极管组成Vienna整流器拓扑结构来确保输入的高功率因数。SCR整流电路一般有6脉冲和12脉冲整流。如图3-6为SCR整流原理示意图及采用三相SCR全桥整流电路6脉冲整流器图,SCR触发脉冲顺序:1-2-3-4-5-6-1。 图3-1 6脉冲SCR全桥整流原理图 12 >>
  • 来源:www.anbokeji.cn/article/167.html
  • MC34063,4V~18V输入,5V, 200mA-300mA左右输出,按照应用手册AN920/D图18设计,效率只有50%,芯片和电感都比较热。目前电感用的是50KHz,220uH(怀疑较大),开关管BC807,请教DC/DC 高手给与建议:
  • MC34063,4V~18V输入,5V, 200mA-300mA左右输出,按照应用手册AN920/D图18设计,效率只有50%,芯片和电感都比较热。目前电感用的是50KHz,220uH(怀疑较大),开关管BC807,请教DC/DC 高手给与建议: >>
  • 来源:bbs.21dianyuan.com/forum.php?mod=viewthread&tid=159635
  •   BUCK/BOOST变换器也有CCM和DCM两种工作方式,开关管Q也为PWM控制方式。   LDO的特点:    非常低的输进输出电压差; 非常小的内部损耗; 很小的温度漂移; 很高的输出电压稳定度; 很好的负载和线性调整率; 很宽的工作温度范围; 较宽的输进电压范围; 外围电路非常简单,使用起来极为方便DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产
  •   BUCK/BOOST变换器也有CCM和DCM两种工作方式,开关管Q也为PWM控制方式。   LDO的特点:    非常低的输进输出电压差; 非常小的内部损耗; 很小的温度漂移; 很高的输出电压稳定度; 很好的负载和线性调整率; 很宽的工作温度范围; 较宽的输进电压范围; 外围电路非常简单,使用起来极为方便DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产 >>
  • 来源:www.wingot.cn/news/104.html
  •   二、隔离电源与非隔离电源的优缺点   由上述概念可知,对于常用的电源拓扑而言,非隔离电源主要有:Buck、Boost、Buck-Boost等;而隔离电源主要有各种带隔离变压器的反激、正激、半桥、LLC等拓扑。   结合常用的隔离与非隔离电源,我们从直观上就可得出它们的一些优缺点,两者的优缺点几乎是相反的。   使用隔离或非隔离的电源,需了解实际项目对电源的需求是怎样的,但在此之前,可了解下隔离和非隔离电源的主要差别:   1、隔离模块的可靠性高,但成本高,效率差点。   2、非隔离模块的结构很简单,成
  •   二、隔离电源与非隔离电源的优缺点   由上述概念可知,对于常用的电源拓扑而言,非隔离电源主要有:Buck、Boost、Buck-Boost等;而隔离电源主要有各种带隔离变压器的反激、正激、半桥、LLC等拓扑。   结合常用的隔离与非隔离电源,我们从直观上就可得出它们的一些优缺点,两者的优缺点几乎是相反的。   使用隔离或非隔离的电源,需了解实际项目对电源的需求是怎样的,但在此之前,可了解下隔离和非隔离电源的主要差别:   1、隔离模块的可靠性高,但成本高,效率差点。   2、非隔离模块的结构很简单,成 >>
  • 来源:www.diangon.com/forum.php?mod=viewthread&tid=34155&ordertype=2
  • 公司简介 江苏安科瑞电器制造有限公司是安科瑞电气股份有限公司(证券代码:300286 SZ.)的全资子公司,是安科瑞电量采集、电力监控、电能管理、电气安全、低压保护、智能光伏等系列产品的生产基地。公司位于江苏省江阴市,目前现代化生产厂房面积达3万平方米,可年生产电力仪表/测控装置100万台、电流互感器80万只、非标电气柜5000台套。公司电子组装生产线均采用无铅生产工艺,生产检测设备自动化程度高,达到国内领头羊水平;建立了集ERP、MES、SRM、PDM的信息管理系统,是江苏省两化融合试点企业。 通过在产
  • 公司简介 江苏安科瑞电器制造有限公司是安科瑞电气股份有限公司(证券代码:300286 SZ.)的全资子公司,是安科瑞电量采集、电力监控、电能管理、电气安全、低压保护、智能光伏等系列产品的生产基地。公司位于江苏省江阴市,目前现代化生产厂房面积达3万平方米,可年生产电力仪表/测控装置100万台、电流互感器80万只、非标电气柜5000台套。公司电子组装生产线均采用无铅生产工艺,生产检测设备自动化程度高,达到国内领头羊水平;建立了集ERP、MES、SRM、PDM的信息管理系统,是江苏省两化融合试点企业。 通过在产 >>
  • 来源:www.hbzhan.com/Product/detail/16535944.html
  •   图6 Buck-Bocet转换器的小信号平均电路模型   PWM开关的小信号平均电路模型置换,保留其余线性时不变元件即可。在Buck-Boost转换器中,c端输出电流Ic即电感电流IL,而a、p之间电压Uap,则为输人和输出电压之差Ui-Uo。在Cuk转换器中,c端的输出电流Ic,则为输人、输出滤波电感电流i和I1+I2,而a、p之间的电压Uap则为耦合电容C1上的电压Uc1。
  •   图6 Buck-Bocet转换器的小信号平均电路模型   PWM开关的小信号平均电路模型置换,保留其余线性时不变元件即可。在Buck-Boost转换器中,c端输出电流Ic即电感电流IL,而a、p之间电压Uap,则为输人和输出电压之差Ui-Uo。在Cuk转换器中,c端的输出电流Ic,则为输人、输出滤波电感电流i和I1+I2,而a、p之间的电压Uap则为耦合电容C1上的电压Uc1。 >>
  • 来源:data.weeqoo.com/2008/10/2008108144526147274.html
  • 主要计算参数: 1.Rsense1 此电阻的计算,需要计算boost和buck两种模式下的电阻,然后选择小于两者,余量为最小30%,经过计算以及留取30%的余量,选取Rsense1=5mR,型号LRF3WLF-01-R005-F。 2.电感 电感的计算除了正常计算,还需要考虑次谐波震荡时的计算,如果计算出来有负数情况,可以把负数看作0.
  • 主要计算参数: 1.Rsense1 此电阻的计算,需要计算boost和buck两种模式下的电阻,然后选择小于两者,余量为最小30%,经过计算以及留取30%的余量,选取Rsense1=5mR,型号LRF3WLF-01-R005-F。 2.电感 电感的计算除了正常计算,还需要考虑次谐波震荡时的计算,如果计算出来有负数情况,可以把负数看作0. >>
  • 来源:bbs.21dianyuan.com/thread-289715-1-555.html
  • 一、电源隔离与非隔离的概念 电源的隔离与非隔离,主要是针对开关电源而言,业内比较通用的看法是: 1、隔离电源:电源的输入回路和输出回路之间没有直接的电气连接,输入和输出之间是绝缘的高阻态,没有电流回路; 2、非隔离电源:输入和输出之间有直接的电流回路,例如,输入和输出之间是共地的。 以Buck-Boost及其隔离的版本反激电路为例,示意图如图1和图2所示。                             图1 非隔离电源  图2 采用变压器
  • 一、电源隔离与非隔离的概念 电源的隔离与非隔离,主要是针对开关电源而言,业内比较通用的看法是: 1、隔离电源:电源的输入回路和输出回路之间没有直接的电气连接,输入和输出之间是绝缘的高阻态,没有电流回路; 2、非隔离电源:输入和输出之间有直接的电流回路,例如,输入和输出之间是共地的。 以Buck-Boost及其隔离的版本反激电路为例,示意图如图1和图2所示。 图1 非隔离电源 图2 采用变压器 >>
  • 来源:www.hongyundy.com/article-item-531.html
  • MC34063,4V~18V输入,5V, 200mA-300mA左右输出,按照应用手册AN920/D图18设计,效率只有50%,芯片和电感都比较热。目前电感用的是50KHz,220uH(怀疑较大),开关管BC807,请教DC/DC 高手给与建议:
  • MC34063,4V~18V输入,5V, 200mA-300mA左右输出,按照应用手册AN920/D图18设计,效率只有50%,芯片和电感都比较热。目前电感用的是50KHz,220uH(怀疑较大),开关管BC807,请教DC/DC 高手给与建议: >>
  • 来源:bbs.21dianyuan.com/thread-159635-1-386.html