• 负反馈放大电路可分为单级负反馈放大电路和多级负反馈放大电路,BAS416单级负反馈放大电路又可细分为并联负反馈放大电路和串联负反馈放大电路两种。 并联负反馈放大电路 图4. 25所示为常见并联负反馈放大电路。其中电阻器R为电压负反馈元件,电阻器R的左端直接与输入端相连,右端又直接与输出端相连,将输出与输入回路联系起来。 首先假设某瞬时输入信号为正极(+),由于共发射极晶体三极管放大器输出的电压极性与输入的相反,则输出信号为负极(一),通过反馈元件R,将负极性的反馈信号加到基极(b),假设与信号源极性相反,
  • 负反馈放大电路可分为单级负反馈放大电路和多级负反馈放大电路,BAS416单级负反馈放大电路又可细分为并联负反馈放大电路和串联负反馈放大电路两种。 并联负反馈放大电路 图4. 25所示为常见并联负反馈放大电路。其中电阻器R为电压负反馈元件,电阻器R的左端直接与输入端相连,右端又直接与输出端相连,将输出与输入回路联系起来。 首先假设某瞬时输入信号为正极(+),由于共发射极晶体三极管放大器输出的电压极性与输入的相反,则输出信号为负极(一),通过反馈元件R,将负极性的反馈信号加到基极(b),假设与信号源极性相反, >>
  • 来源:www.51dzw.com/embed/embed_88438.html
  • 共集电极放大电路 六、电路反馈框图 1、反馈的概念,正负反馈及其判断方法、并联反馈和串联反馈及其判断方法、电流反馈和电压反馈及其判断方法。 2、带负反馈电路的放大增益。 3、负反馈对电路的放大增益、通频带、增益的稳定性、失真、输入和输出电阻的影响。 七、二极管稳压电路 1、稳压二极管的特性曲线。 2、稳压二极管应用注意事项。 3、稳压过程分析。
  • 共集电极放大电路 六、电路反馈框图 1、反馈的概念,正负反馈及其判断方法、并联反馈和串联反馈及其判断方法、电流反馈和电压反馈及其判断方法。 2、带负反馈电路的放大增益。 3、负反馈对电路的放大增益、通频带、增益的稳定性、失真、输入和输出电阻的影响。 七、二极管稳压电路 1、稳压二极管的特性曲线。 2、稳压二极管应用注意事项。 3、稳压过程分析。 >>
  • 来源:www.sohu.com/a/221718420_765988
  •   在要求低噪声的应用中用二级滤波,如图9.R5在滤波电感前,另一路通过积分器,在滤波电感后.如果二级滤波谐振是衰减的并且谐振频率超过补偿网络的第一个零点(TL431的单位增益频率),则电路稳定.这是一个非常有用有趣的电路.二级滤波额外的相位延迟和极点通过积分器直接在回路中显示出来,但当TL431增益的小于单位增益时(超过全部补偿的零点时)这不改变回路的响应.
  •   在要求低噪声的应用中用二级滤波,如图9.R5在滤波电感前,另一路通过积分器,在滤波电感后.如果二级滤波谐振是衰减的并且谐振频率超过补偿网络的第一个零点(TL431的单位增益频率),则电路稳定.这是一个非常有用有趣的电路.二级滤波额外的相位延迟和极点通过积分器直接在回路中显示出来,但当TL431增益的小于单位增益时(超过全部补偿的零点时)这不改变回路的响应. >>
  • 来源:www.sddgks.com/ruodian/dianjishu/43838.html
  • 2、国内外发展情况(文献综述) 2、1清洁机器人研究现状 清洗机器人是一种机械设备,它可以沿管道内壁行走,它可以携带一种或多种传感器以及操作装置(如CCD传感器,超声波传感器,位置传感器,简单的操作机械手,防腐喷漆装置以及本课题用的雨刷清洗装置等),一系列的管道检测和清洗作业通过操作人员的操作来进行。移动载体,基于计算机视觉的定位检测系统,动力传输系统和信号传递及驱动控制系统组成了一个完整的管道清洗机器人系统,其中驱动控制系统是管道清洗机器人的核心部分。在管道机器人技术方面,美国,英国,德国,日本等发达国
  • 2、国内外发展情况(文献综述) 2、1清洁机器人研究现状 清洗机器人是一种机械设备,它可以沿管道内壁行走,它可以携带一种或多种传感器以及操作装置(如CCD传感器,超声波传感器,位置传感器,简单的操作机械手,防腐喷漆装置以及本课题用的雨刷清洗装置等),一系列的管道检测和清洗作业通过操作人员的操作来进行。移动载体,基于计算机视觉的定位检测系统,动力传输系统和信号传递及驱动控制系统组成了一个完整的管道清洗机器人系统,其中驱动控制系统是管道清洗机器人的核心部分。在管道机器人技术方面,美国,英国,德国,日本等发达国 >>
  • 来源:www.biyezuopin.cc/onews.asp?id=8639
  • Buck开关型调整器 串接晶体管的高功耗和笨重的工频变压器使得线性调整器在现代电子应用中失去了重要地位。而且,高功耗串接元件需要的大散热片和大体积储能电容增大了线性调整器的体积。 随着电子技术的发展,电路的集成化使得电路系统的体积更小。一般的线性调整器输出负载的功率密度仅为0.
  • Buck开关型调整器 串接晶体管的高功耗和笨重的工频变压器使得线性调整器在现代电子应用中失去了重要地位。而且,高功耗串接元件需要的大散热片和大体积储能电容增大了线性调整器的体积。 随着电子技术的发展,电路的集成化使得电路系统的体积更小。一般的线性调整器输出负载的功率密度仅为0. >>
  • 来源:www.dgjiuqi.com/NewsView.asp?ID=1591
  • 下面介绍制作简单的50W-100W电压形式的音响功率放大器,该电路属于电压形式的功率放大器,最大优点是制作十分简单!只要按电路图上面的方法,可一次成功。调试方法也很简单。主要调整的元件是:R11、R12、R13调整R11和R12可以静态电流。  :
  • 下面介绍制作简单的50W-100W电压形式的音响功率放大器,该电路属于电压形式的功率放大器,最大优点是制作十分简单!只要按电路图上面的方法,可一次成功。调试方法也很简单。主要调整的元件是:R11、R12、R13调整R11和R12可以静态电流。 : >>
  • 来源:www.dziuu.com/gongfangdianlu/y/15416419922453.shtml
  • 1. 降低放大倍数   1+AF称为反馈深度,其值愈大,负反馈作用愈强,Af也就愈小。 射极输出器、不带旁路电容的共射放大电路的电压放大倍数较低就是因为电路中引入了负反馈。 2.提高放大倍数的稳定性  3. 改善波形失真  负反馈是利用失真的波形来改善波形的失真,因此只能减小失真,而不能完全消除失真。 4.
  • 1. 降低放大倍数 1+AF称为反馈深度,其值愈大,负反馈作用愈强,Af也就愈小。 射极输出器、不带旁路电容的共射放大电路的电压放大倍数较低就是因为电路中引入了负反馈。 2.提高放大倍数的稳定性 3. 改善波形失真 负反馈是利用失真的波形来改善波形的失真,因此只能减小失真,而不能完全消除失真。 4. >>
  • 来源:www.54diangong.com/post/26346.html
  • 图3电流并联负反馈 (1)、串联并联的判断 反馈的串并联类型是指反馈信号影响输入信号的方式即在输入端的连接方式。串联反馈是指净输入电压和反馈电压在输入回路中的连接形式为串联,如图1中的净输入电压信号ube1和反馈信号uf=ue1;而并联反馈是指的净输入电流和反馈电流在输入回路中并联,如图3中的净输入电流ib1和if的连接形式。综合一下就是反馈信号如果引回到输入回路的发射极即为串联反馈,引回到基极即为并联反馈。而在运算放大器负反馈电路中,反馈引回到输入另一端则为串联反馈如图4,图中uD与uF串联连接;如果
  • 图3电流并联负反馈 (1)、串联并联的判断 反馈的串并联类型是指反馈信号影响输入信号的方式即在输入端的连接方式。串联反馈是指净输入电压和反馈电压在输入回路中的连接形式为串联,如图1中的净输入电压信号ube1和反馈信号uf=ue1;而并联反馈是指的净输入电流和反馈电流在输入回路中并联,如图3中的净输入电流ib1和if的连接形式。综合一下就是反馈信号如果引回到输入回路的发射极即为串联反馈,引回到基极即为并联反馈。而在运算放大器负反馈电路中,反馈引回到输入另一端则为串联反馈如图4,图中uD与uF串联连接;如果 >>
  • 来源:mini.eastday.com/a/180917223331463-2.html
  • 放大电路中引入负反馈后削弱了净输入信号,故输出信号比未引入负反馈时要小,也就是引入负反馈后放大倍数降低了,但却使放大电路的工作性能得到了改善。 1、提高放大电路的稳定性 由图(b)所示的带有反馈的放大电路方框图可知(设x表示电压信号),基本放大电路的放大倍数,即未引入反馈时的放大倍数(也称开环放大倍数)为 (1) 反馈信号与输出信号之比称为反馈系数,即 (2) 若引入的是负反馈,则净输入信号为: (3) 由上列三式可得出引入负反馈时的放大倍数(也称闭环放大倍数) (4) 通常在放大电路中,如信号频率为中频
  • 放大电路中引入负反馈后削弱了净输入信号,故输出信号比未引入负反馈时要小,也就是引入负反馈后放大倍数降低了,但却使放大电路的工作性能得到了改善。 1、提高放大电路的稳定性 由图(b)所示的带有反馈的放大电路方框图可知(设x表示电压信号),基本放大电路的放大倍数,即未引入反馈时的放大倍数(也称开环放大倍数)为 (1) 反馈信号与输出信号之比称为反馈系数,即 (2) 若引入的是负反馈,则净输入信号为: (3) 由上列三式可得出引入负反馈时的放大倍数(也称闭环放大倍数) (4) 通常在放大电路中,如信号频率为中频 >>
  • 来源:www.jdzj.com/diangong/article/2018-2-3/97895-1.htm
  • 负反馈放大电路的四种基本类型 1.电压反馈和电流反馈 若反馈信号取自输出电压信号,则称为电压反馈;若反馈信号取自输出电流信号,则称为电流反馈。 通常,采用将负载电阻短路的方法来判别电压反馈和电流反馈。具体方法是:若将负载电阻RL短路,如果反馈作用消失,则为电压反馈;如果反馈作用存在,则为电流反馈。 2.串联反馈和并联反馈 若反馈信号与输入信号在基本放大电路的输入端以电压串联的形式迭加,则称为串联反馈;若反馈信号与输入信号在基本放大电路的输入端以电流并联的形式迭加,则称为并联反馈。 根据电压/电流和串联/并
  • 负反馈放大电路的四种基本类型 1.电压反馈和电流反馈 若反馈信号取自输出电压信号,则称为电压反馈;若反馈信号取自输出电流信号,则称为电流反馈。 通常,采用将负载电阻短路的方法来判别电压反馈和电流反馈。具体方法是:若将负载电阻RL短路,如果反馈作用消失,则为电压反馈;如果反馈作用存在,则为电流反馈。 2.串联反馈和并联反馈 若反馈信号与输入信号在基本放大电路的输入端以电压串联的形式迭加,则称为串联反馈;若反馈信号与输入信号在基本放大电路的输入端以电流并联的形式迭加,则称为并联反馈。 根据电压/电流和串联/并 >>
  • 来源:eeskill.com/article/id/65153
  • 图1所示是热电阻(如Ptl00)与输入模块的4线连接回路示意图。通过端IC+和IC-将恒定电流送到电阻型温度计或电阻,通过M+和M-端子测得在电阻型温度计或电阻上产生的电压,4线回路可以获得很高的测量精度。如果接成2线或3线回路,则必须在M+和IC+之间以及在M-和IC-之间插入跨接线,不过这将降低测量结果的精度。
  • 图1所示是热电阻(如Ptl00)与输入模块的4线连接回路示意图。通过端IC+和IC-将恒定电流送到电阻型温度计或电阻,通过M+和M-端子测得在电阻型温度计或电阻上产生的电压,4线回路可以获得很高的测量精度。如果接成2线或3线回路,则必须在M+和IC+之间以及在M-和IC-之间插入跨接线,不过这将降低测量结果的精度。 >>
  • 来源:www.cpooo.com/products/261424832.html
  • 的复杂性。那幺差分信号提供了什幺样的有形益处,才能证明复杂性和成本的增加是值得的呢? 差分信号的第一个好处是,因为你在控制'基准'电压,所以能够很容易地识别小信号。在一个地做基准,单端信号方案的系统里,测量信号的精确值依赖系统内'地'的一致性。信号源和信号接收器距离越远,他们局部地的电压值之间有差异的可能性就越大。从差分信号恢复的信号值在很大程度上与'地'的精确值无关,而在某一范围内。 差分信号的第二个主要好处是,它对外部电磁干扰(EMI)是高度免疫的。一个
  • 的复杂性。那幺差分信号提供了什幺样的有形益处,才能证明复杂性和成本的增加是值得的呢? 差分信号的第一个好处是,因为你在控制'基准'电压,所以能够很容易地识别小信号。在一个地做基准,单端信号方案的系统里,测量信号的精确值依赖系统内'地'的一致性。信号源和信号接收器距离越远,他们局部地的电压值之间有差异的可能性就越大。从差分信号恢复的信号值在很大程度上与'地'的精确值无关,而在某一范围内。 差分信号的第二个主要好处是,它对外部电磁干扰(EMI)是高度免疫的。一个 >>
  • 来源:www.elecfans.com/d/872188.html
  •   图1 补偿反馈放大器   图2所示出的是利用这种原理制成的LM-12型记录仪线路图。它由前级电压放大、后级电流变换和虚线框内的表头三个部分组成。电压放大级由集成运放构成,用来将被测信号Uin,放大(或衰减)变换为U1。电流变换级是具有深度电流负反馈的直流放大器,用来将电压U1转换为输出电流Io。
  •   图1 补偿反馈放大器   图2所示出的是利用这种原理制成的LM-12型记录仪线路图。它由前级电压放大、后级电流变换和虚线框内的表头三个部分组成。电压放大级由集成运放构成,用来将被测信号Uin,放大(或衰减)变换为U1。电流变换级是具有深度电流负反馈的直流放大器,用来将电压U1转换为输出电流Io。 >>
  • 来源:data.weeqoo.com/2008/11/2008112813508150834.html
  •   图1. 带光耦合器和分流调节器的反激式调节器框图   CTR为晶体管输出电流和LED输入电流之比。CTR的特性不是线性的,因光耦合器而异。如图2所示,光耦合器CTR值会在整个工作寿命内变化,对设计稳定性提出挑战。今天设计并测试的光耦合器其初始CTR通常具有2比1的不确定性,但长期工作在高功率和高密度电源的高温环境下,几年以后 CTR将下降40%。将光耦合器用作线性器件时,它具有相对较慢的传输特性(小信号带宽约50 kHz),因此对电源的环路响应也较慢。对于反激式拓扑而言,较慢的传输特性可能并不存在任
  •   图1. 带光耦合器和分流调节器的反激式调节器框图   CTR为晶体管输出电流和LED输入电流之比。CTR的特性不是线性的,因光耦合器而异。如图2所示,光耦合器CTR值会在整个工作寿命内变化,对设计稳定性提出挑战。今天设计并测试的光耦合器其初始CTR通常具有2比1的不确定性,但长期工作在高功率和高密度电源的高温环境下,几年以后 CTR将下降40%。将光耦合器用作线性器件时,它具有相对较慢的传输特性(小信号带宽约50 kHz),因此对电源的环路响应也较慢。对于反激式拓扑而言,较慢的传输特性可能并不存在任 >>
  • 来源:www.eepw.com.cn/article/201710/369136.htm
  • 来源:单片机与嵌入式系统应用 作者:石浩亮 刘利花 1 ADS5517芯片简介 ADS5517是TI公司新近推出的一款高采样率、高性能的模/数转换器。它拥有小封装体积和高模拟带宽,并且在高频模拟信号输入的前提下可以得到很高的SNR(SignaltoNoise Ratio,信噪比)和SFDR(SpuriousFree Dynamic Range,无杂散动态范围)。ADS5517具有可编程增益功能,使其可以在很低的满量程模拟信号输入范围内获得很高的SFDR。其主要特点如下: 最高采样率为200 Msps
  • 来源:单片机与嵌入式系统应用 作者:石浩亮 刘利花 1 ADS5517芯片简介 ADS5517是TI公司新近推出的一款高采样率、高性能的模/数转换器。它拥有小封装体积和高模拟带宽,并且在高频模拟信号输入的前提下可以得到很高的SNR(SignaltoNoise Ratio,信噪比)和SFDR(SpuriousFree Dynamic Range,无杂散动态范围)。ADS5517具有可编程增益功能,使其可以在很低的满量程模拟信号输入范围内获得很高的SFDR。其主要特点如下: 最高采样率为200 Msps >>
  • 来源:bbbs.weeqoo.com/archiver/showtopic-277649.html
  • 压控增益低频放大器设计(附电路图,程序代码)(任务书,论文8500字) 摘 要 本作品压控增益低频放大器设计,由前级放大模块、增益控制模块、后级功率放大模块、A/D(D/A)模块组成。采用STC89c52单片机作为微控制器,以可编程增益放大器AD603为放大电路的核心,设计并制作了具有增益预置和程控等功能的宽带直流放大器及所使用的直流电源。由AD603级联组成增益放大器,实现增益 -20~60dB 范围内可按5dB步进调节或连续可调,且在0~9MHz通频带内增益起伏在1dB以下;互补三极管射级跟随高功率输
  • 压控增益低频放大器设计(附电路图,程序代码)(任务书,论文8500字) 摘 要 本作品压控增益低频放大器设计,由前级放大模块、增益控制模块、后级功率放大模块、A/D(D/A)模块组成。采用STC89c52单片机作为微控制器,以可编程增益放大器AD603为放大电路的核心,设计并制作了具有增益预置和程控等功能的宽带直流放大器及所使用的直流电源。由AD603级联组成增益放大器,实现增益 -20~60dB 范围内可按5dB步进调节或连续可调,且在0~9MHz通频带内增益起伏在1dB以下;互补三极管射级跟随高功率输 >>
  • 来源:www.2bysj.cn/Electronics/elec/201901/14648.html
  • 摘 要 介绍Multisim仿真软件的功能及特点,并以负反馈放大电路为例,阐述采用Multisim对电路进行实验仿真的过程。 关键词 Multisim;反馈放大电路;电路分析;仿真 中图分类号:TP391.9 文献标识码:B 文章编号:1671-489X(2017)18-0037-03 1 前言 Multisim是一个全开放性的仿真实验平台,可以实现各种电路的虚拟实验,对电路进行全面的仿真分析和设计。Multisim的特点包括:操作界面人性化,元器件库规模庞大(如模拟和数字器件、微机接口元件、射频元件等
  • 摘 要 介绍Multisim仿真软件的功能及特点,并以负反馈放大电路为例,阐述采用Multisim对电路进行实验仿真的过程。 关键词 Multisim;反馈放大电路;电路分析;仿真 中图分类号:TP391.9 文献标识码:B 文章编号:1671-489X(2017)18-0037-03 1 前言 Multisim是一个全开放性的仿真实验平台,可以实现各种电路的虚拟实验,对电路进行全面的仿真分析和设计。Multisim的特点包括:操作界面人性化,元器件库规模庞大(如模拟和数字器件、微机接口元件、射频元件等 >>
  • 来源:m.fx361.com/page/2017/1130/2505511.shtml