• 线16:连接到PVD输出。PVD(Programmable Votage Detector),即可编程电压监测器。作用是监视供电电压,在供电电压下降到给定的阀值以下时,产生一个中断,通知软件做紧急处理。当供电电压又恢复到给定的阀值以上时,也会产生一个中断,通知软件供电恢复。
  • 线16:连接到PVD输出。PVD(Programmable Votage Detector),即可编程电压监测器。作用是监视供电电压,在供电电压下降到给定的阀值以下时,产生一个中断,通知软件做紧急处理。当供电电压又恢复到给定的阀值以上时,也会产生一个中断,通知软件供电恢复。 >>
  • 来源:www.stm8.cn/news/STM32File/1129.html
  • 前段时间做了个迷你电子称跟大家分享一下。 当时设计的时候想着用两节五号干电池让它工作,综合了一下成本,选用了STC15W408AS 20P 做主控,采用74HC595串口驱动数码管做显示。 不得不在这里赞扬一下STC15W408AS这个单片机,个人认为它价格便宜,功能强大,引脚少,更重要的是工作电压是5.
  • 前段时间做了个迷你电子称跟大家分享一下。 当时设计的时候想着用两节五号干电池让它工作,综合了一下成本,选用了STC15W408AS 20P 做主控,采用74HC595串口驱动数码管做显示。 不得不在这里赞扬一下STC15W408AS这个单片机,个人认为它价格便宜,功能强大,引脚少,更重要的是工作电压是5. >>
  • 来源:www.ndiy.cn/forum.php?mod=viewthread&tid=33868&highlight=STC15W
  • 步进电机内部结构如图1所示:  如何能使它转起来呢?一搬有两种方法: 1.单相驱动:一相一相驱动,线圈加高电平顺序是:黄蓝红橙;或是:橙红蓝黄。其中黑白接地。 2.双相驱动:当要求电动机输出大功率时可以两相两相同时驱动,线圈加高电平顺序为:黄+红蓝+橙;或是:橙+蓝红+黄。 了解步进电机的驱动方式后、我想到了用移位寄存器产生移位脉冲来让步进电机动起来。电路如图2。  图2是通过拨码开关控制74LS194使Q0、Q1、Q2、Q3产生上面提过的两种移位脉冲来控制U1(光电耦合器
  • 步进电机内部结构如图1所示: 如何能使它转起来呢?一搬有两种方法: 1.单相驱动:一相一相驱动,线圈加高电平顺序是:黄蓝红橙;或是:橙红蓝黄。其中黑白接地。 2.双相驱动:当要求电动机输出大功率时可以两相两相同时驱动,线圈加高电平顺序为:黄+红蓝+橙;或是:橙+蓝红+黄。 了解步进电机的驱动方式后、我想到了用移位寄存器产生移位脉冲来让步进电机动起来。电路如图2。 图2是通过拨码开关控制74LS194使Q0、Q1、Q2、Q3产生上面提过的两种移位脉冲来控制U1(光电耦合器 >>
  • 来源:www.zxskj.cn/dianzi/zidongkongzhidianlu/1316.html
  • 在汇编语言中寄存器R0~R13为保存数据或地址值的通用寄存器。它们是完全通用的寄存器,不会被体系结构作为特殊用途,并且可用于任何使用通用寄存器的指令。其中R0~R7为未分组的寄存器,也就是说对于任何处理器模式,这些寄存器都对应于相同的32位物理寄存器。寄存器R8~R14为分组寄存器。它们所对应的物理寄存器取决于当前的处理器模式,几乎所有允许使用通用寄存器的指令都允许使用分组寄存器。寄存器R8~R12有两个分组的物理寄存器。一个用于除FIQ模式之外的所有寄存器模式,另一个用于FIQ模式。这样在发生FIQ中断
  • 在汇编语言中寄存器R0~R13为保存数据或地址值的通用寄存器。它们是完全通用的寄存器,不会被体系结构作为特殊用途,并且可用于任何使用通用寄存器的指令。其中R0~R7为未分组的寄存器,也就是说对于任何处理器模式,这些寄存器都对应于相同的32位物理寄存器。寄存器R8~R14为分组寄存器。它们所对应的物理寄存器取决于当前的处理器模式,几乎所有允许使用通用寄存器的指令都允许使用分组寄存器。寄存器R8~R12有两个分组的物理寄存器。一个用于除FIQ模式之外的所有寄存器模式,另一个用于FIQ模式。这样在发生FIQ中断 >>
  • 来源:www.61ic.com/code/viewthread.php?tid=22166
  • 处理器模式 用户模式(user)简称usr 快速中断模式(FIQ)简称fiq 外部中断模式(IRQ)简称irq 特权模式(supervisor)简称sve 数据访问终止模式(abort)简称abt 未定义指令后终止模式(undefined)简称und 除了用户模式以外,其他的模式成为特权模式,这些模式下,程序可以访问所有系统资源,也可以任意进行处理机模式 处理其模式可以通过软件进行控制,可以同国外部中断或者是异常处理进行切换,大多数的用户程序运行在用户模式下,这时候应用程序不能访问一些受系统保护的系统资源
  • 处理器模式 用户模式(user)简称usr 快速中断模式(FIQ)简称fiq 外部中断模式(IRQ)简称irq 特权模式(supervisor)简称sve 数据访问终止模式(abort)简称abt 未定义指令后终止模式(undefined)简称und 除了用户模式以外,其他的模式成为特权模式,这些模式下,程序可以访问所有系统资源,也可以任意进行处理机模式 处理其模式可以通过软件进行控制,可以同国外部中断或者是异常处理进行切换,大多数的用户程序运行在用户模式下,这时候应用程序不能访问一些受系统保护的系统资源 >>
  • 来源:www.cnblogs.com/fengdashen/p/3724709.html
  • 看门狗定时器WDT是一片内自振荡式RC振荡器,即使外部振荡器被关闭(即工作在休眠模式),WDT也一直在计数。当WDT被使能,无论是在工作模式或休眠模式,若WDT超时,都将导致单片机复位,因此WDT主要用来防止单片机系统失控,一般WDT基本溢出周期约18ms(PAB=0),最大溢出周期约2.
  • 看门狗定时器WDT是一片内自振荡式RC振荡器,即使外部振荡器被关闭(即工作在休眠模式),WDT也一直在计数。当WDT被使能,无论是在工作模式或休眠模式,若WDT超时,都将导致单片机复位,因此WDT主要用来防止单片机系统失控,一般WDT基本溢出周期约18ms(PAB=0),最大溢出周期约2. >>
  • 来源:www.zsgbailin.com/emjg2.htm
  • 2.5.4 定点运算器的基本结构      运算器包括ALU阵列乘除器寄存器多路开关三态缓冲器数据总线等逻辑部件。      运算器的设计,主要是围绕ALU和寄存器同数据总线之间如何传送操作数和运算结果进行的。      在决定方案时,需要考虑数据传送的方便性和操作速度,在微型机和单片机中还要考虑在硅片上制作总线的工艺。 计算机的运算器大体有如下三种结构形式:
  • 2.5.4 定点运算器的基本结构      运算器包括ALU阵列乘除器寄存器多路开关三态缓冲器数据总线等逻辑部件。      运算器的设计,主要是围绕ALU和寄存器同数据总线之间如何传送操作数和运算结果进行的。      在决定方案时,需要考虑数据传送的方便性和操作速度,在微型机和单片机中还要考虑在硅片上制作总线的工艺。 计算机的运算器大体有如下三种结构形式: >>
  • 来源:www.educity.cn/zk/zcyl/201004131015231639.htm
  • Nios嵌入式处理器系统由Nios嵌入式处理器、DMA控制器、数据存储区SDRAM、程序存储区F1ash和Avalon总线构成。其中DMA控制器用于实现两个存储器之间,或者存储器和外设之间,或者是两个外设之间的直接数据传输。DMA模块用于连接支持流模式传输的外设,并允许定长或变长的数据传输,而不需要CPU的干涉。在Ultra DMA数据传输的过程中,可以一次性传输最多256个扇区的数据,所以在系统中使用DMA控制器可以方便地在硬盘与系统中各种支持流传输模式的设备之间建立直通连接,提高系统的数据传输效率。
  • Nios嵌入式处理器系统由Nios嵌入式处理器、DMA控制器、数据存储区SDRAM、程序存储区F1ash和Avalon总线构成。其中DMA控制器用于实现两个存储器之间,或者存储器和外设之间,或者是两个外设之间的直接数据传输。DMA模块用于连接支持流模式传输的外设,并允许定长或变长的数据传输,而不需要CPU的干涉。在Ultra DMA数据传输的过程中,可以一次性传输最多256个扇区的数据,所以在系统中使用DMA控制器可以方便地在硬盘与系统中各种支持流传输模式的设备之间建立直通连接,提高系统的数据传输效率。 >>
  • 来源:www.mcu123.com/news/Article/ARMsource/ARM/200610/2366.html
  • 摘要:本文主要介绍了智能图像传感器DVT的在线检测,并且对检测结果获取、传输方面技术进行了说明,以及智能传感器和外围设备之间通信的研究。表明其获取结果多样性。本文举例应用智能传感器DVT630对工件小孔定位、半径测量,实验表明此传感器灵活性高,检测结果准确,提高工业流水生长线上的检测效率。 1、引言 DVT机器视觉系统,是能够代替人眼的计算机系统,是为适应图像、字符自动化生产线的检测和监控而研究开发的。 在高速、批量、连续的自动化生产过程中,往往需要视觉系统进行OCR字符及各种号码识别、质量检查、色彩与几
  • 摘要:本文主要介绍了智能图像传感器DVT的在线检测,并且对检测结果获取、传输方面技术进行了说明,以及智能传感器和外围设备之间通信的研究。表明其获取结果多样性。本文举例应用智能传感器DVT630对工件小孔定位、半径测量,实验表明此传感器灵活性高,检测结果准确,提高工业流水生长线上的检测效率。 1、引言 DVT机器视觉系统,是能够代替人眼的计算机系统,是为适应图像、字符自动化生产线的检测和监控而研究开发的。 在高速、批量、连续的自动化生产过程中,往往需要视觉系统进行OCR字符及各种号码识别、质量检查、色彩与几 >>
  • 来源:www.dt365.com/Article/HTML/20120705213327_9469.html
  • 可能你已经注意到了,表 5-2 的 TCON 最后标注了“可位寻址”,而表 5-4 的 TMOD 标注的是“不可位寻址”。意思就是说:比如 TCON 有一个位叫 TR1,我们可以在程序中直接进行 TR1 = 1 这样的操作。但对 TMOD 里的位比如(T1)M1 = 1 这样的操作就是错误的。我们要操作就必须一次操作这整个字节,也就是必须一次性对 TMOD 所有位操作,不能对其中某一位单独进行操作,那么我们能不能只修改其中的一位而不影响其它位的值呢?当然可以
  • 可能你已经注意到了,表 5-2 的 TCON 最后标注了“可位寻址”,而表 5-4 的 TMOD 标注的是“不可位寻址”。意思就是说:比如 TCON 有一个位叫 TR1,我们可以在程序中直接进行 TR1 = 1 这样的操作。但对 TMOD 里的位比如(T1)M1 = 1 这样的操作就是错误的。我们要操作就必须一次操作这整个字节,也就是必须一次性对 TMOD 所有位操作,不能对其中某一位单独进行操作,那么我们能不能只修改其中的一位而不影响其它位的值呢?当然可以 >>
  • 来源:c.biancheng.net/cpp/html/1878.html
  • 将指定的[写入触发位地址]置ON,保存在人机界面中的采样数据会被写入内部寄存器。 如果取消勾选[模式]选项卡-扩展设置中的[在完成指定周期后覆盖原有数据]复选框,可以写入每个块。 写入采样数据  如果在[写入数据]选项卡中勾选[包括周期数],则会在起始地址中以二进制形式保存执行的采样周期数(保存的采样数据数)。 例如,如果周期数是5,当前采样轮次是2,那么[存储数据数]就是2。此时,对于样本3及以后的采样数据,将在保存区中保存0。 如果未勾选[包括周期数],则从起始地址起保存第1个采样数据。
  • 将指定的[写入触发位地址]置ON,保存在人机界面中的采样数据会被写入内部寄存器。 如果取消勾选[模式]选项卡-扩展设置中的[在完成指定周期后覆盖原有数据]复选框,可以写入每个块。 写入采样数据 如果在[写入数据]选项卡中勾选[包括周期数],则会在起始地址中以二进制形式保存执行的采样周期数(保存的采样数据数)。 例如,如果周期数是5,当前采样轮次是2,那么[存储数据数]就是2。此时,对于样本3及以后的采样数据,将在保存区中保存0。 如果未勾选[包括周期数],则从起始地址起保存第1个采样数据。 >>
  • 来源:www.proface.com.cn/otasuke/files/manual/gpproex/new/refer/mergedProjects/sampling/sampling_mm_internaldeviceoperations.htm
  • 我们选择的是(TRG=10 & PT=1)倒数第二个选项,只要设置了一个装载值和比较值就可以确定占空比和周期。 设置装载值: TI8168_EVM#mw.l 0x48044040 0xffffffe0 vcD4KPHA+y8Shosno1sOxyL3PJiMyMDU0MDujujwvcD4KPHA+VEk4MTY4X0VWTSNtdy5sIDB4NDgwNDQwNGMgMHhmZmZmZmZmMCA8YnI+CjwvcD4KPHA+PGltZyBzcmM
  • 我们选择的是(TRG=10 & PT=1)倒数第二个选项,只要设置了一个装载值和比较值就可以确定占空比和周期。 设置装载值: TI8168_EVM#mw.l 0x48044040 0xffffffe0 vcD4KPHA+y8Shosno1sOxyL3PJiMyMDU0MDujujwvcD4KPHA+VEk4MTY4X0VWTSNtdy5sIDB4NDgwNDQwNGMgMHhmZmZmZmZmMCA8YnI+CjwvcD4KPHA+PGltZyBzcmM >>
  • 来源:www.41443.com/HTML/Java/20150320/358056.html
  •               摘要:介绍了Philips公司最新推出的Mifare非接触IC卡读写芯片MF RC522的主要特性、引脚功能和基本指令集;简述以MSP430系列超低功耗16位单片机为内核的水表设计以及与MFRC522的硬件接口电路设计;重点阐述了MSP430对MF RC522的读写控制流程。     关键词:MF RC522 MSP430单片机 低功耗 水表 &nbs
  •               摘要:介绍了Philips公司最新推出的Mifare非接触IC卡读写芯片MF RC522的主要特性、引脚功能和基本指令集;简述以MSP430系列超低功耗16位单片机为内核的水表设计以及与MFRC522的硬件接口电路设计;重点阐述了MSP430对MF RC522的读写控制流程。     关键词:MF RC522 MSP430单片机 低功耗 水表 &nbs >>
  • 来源:www.ic37.com/htm_tech/2007-8/41427_589574.htm
  • 1.往SD卡传数据量大,会占用很大的CPU资源,为了防止他一直占用CPU资源,我们用DMA来处理数据,这个速度也很快; 2.对于SD_PowerON()当中CMD*是对应寄存器中的命令, CMD0: 没有返回响应 我们的板子上往往只接了一个卡,但SDIO总线可以并联许多个卡 3.SDIO支持的端口电压是2.
  • 1.往SD卡传数据量大,会占用很大的CPU资源,为了防止他一直占用CPU资源,我们用DMA来处理数据,这个速度也很快; 2.对于SD_PowerON()当中CMD*是对应寄存器中的命令, CMD0: 没有返回响应 我们的板子上往往只接了一个卡,但SDIO总线可以并联许多个卡 3.SDIO支持的端口电压是2. >>
  • 来源:www.lxway.com/482496086.htm
  • 所以,发送和接收寄存器可使用同一地址,编写验证程序(发送和接收是独立空间):读取一个数(1)->发送一个数(2)->再读取得1则是独立空间 不知道STM32串口寄存器和C51串口寄存器是否同样道理 STM32串口寄存器:STM32的发送与接收是通过数据寄存器USART_DR来实现的,这是一个双寄存器,包含了TDR和RDR,对它读操作,读取的是RDR寄存器的值,对它的写操作,实际上是写到TDR寄存器的;当向该寄存器写数据的时候,串口就会自动发送,当收到收据的时候,也是存在该寄存器内。
  • 所以,发送和接收寄存器可使用同一地址,编写验证程序(发送和接收是独立空间):读取一个数(1)->发送一个数(2)->再读取得1则是独立空间 不知道STM32串口寄存器和C51串口寄存器是否同样道理 STM32串口寄存器:STM32的发送与接收是通过数据寄存器USART_DR来实现的,这是一个双寄存器,包含了TDR和RDR,对它读操作,读取的是RDR寄存器的值,对它的写操作,实际上是写到TDR寄存器的;当向该寄存器写数据的时候,串口就会自动发送,当收到收据的时候,也是存在该寄存器内。 >>
  • 来源:www.cnblogs.com/cj2014/p/3969951.html
  • 4.4.2 移位型计数器 移位寄存器也可以构成计数器,称为移位型计数器。它有两种结构:环形计数器和扭环形计数器。 图 4-4-3 环形计数器和扭环形计数器 4.4.3 串-并变换器及并-串变换器 串-并变换器是把若干位串行二进制编码变成并行二进制编码的电路。并-串变换器则刚刚相反。  图 4-4-4 8位串-并变换器  图 4-4-5 8位并-串变换器 4.
  • 4.4.2 移位型计数器 移位寄存器也可以构成计数器,称为移位型计数器。它有两种结构:环形计数器和扭环形计数器。 图 4-4-3 环形计数器和扭环形计数器 4.4.3 串-并变换器及并-串变换器 串-并变换器是把若干位串行二进制编码变成并行二进制编码的电路。并-串变换器则刚刚相反。 图 4-4-4 8位串-并变换器 图 4-4-5 8位并-串变换器 4. >>
  • 来源:gc.nuaa.edu.cn/digital/kejian/ch4/4-4.htm
  • 【解析】 试题分析:(1)依据甲图中神经节的位置或突触结构可确定:a效应器、b传出神经、c神经中枢、d突触、e传人神经、f感受器,乙图为突触结构的放大图示,相当于甲图中的d。乙图中的B为突触后膜,突触后膜为下一个神经元的胞体膜或树突膜。(2)突触间兴奋的传递要借助神经递质完成。兴奋在突触间的传递方向只能由突触前膜传向突触后膜,因为神经递质只能由突触前膜释放作用于突触后膜。(3)在电极a的左侧给一适当刺激,a处膜外变为负电位,b处为正电位,电流方向由ba。当兴奋传导到b处时,b处膜外由正电位变为负电位,a处
  • 【解析】 试题分析:(1)依据甲图中神经节的位置或突触结构可确定:a效应器、b传出神经、c神经中枢、d突触、e传人神经、f感受器,乙图为突触结构的放大图示,相当于甲图中的d。乙图中的B为突触后膜,突触后膜为下一个神经元的胞体膜或树突膜。(2)突触间兴奋的传递要借助神经递质完成。兴奋在突触间的传递方向只能由突触前膜传向突触后膜,因为神经递质只能由突触前膜释放作用于突触后膜。(3)在电极a的左侧给一适当刺激,a处膜外变为负电位,b处为正电位,电流方向由ba。当兴奋传导到b处时,b处膜外由正电位变为负电位,a处 >>
  • 来源:www.koolearn.com/shijuan/sj-70817-11.html