• 移位寄存器 移位寄存器不仅有存放数码而且有 的功能。 下图是由JK触发器组成的四位移位寄存器  下图是由维持阻塞型D触发器组成的四位移位寄存器。它既可并行输入(输入端为,)/串行输出(输出端为),又可串行输入(输入端为D)/串行输出。    下图所示的是应用于加法器中的一种。图中,,,是三个n位的移位寄存器,和是并行输入/串行输出,是串行输入/并行输出。  
  • 移位寄存器 移位寄存器不仅有存放数码而且有 的功能。 下图是由JK触发器组成的四位移位寄存器 下图是由维持阻塞型D触发器组成的四位移位寄存器。它既可并行输入(输入端为,)/串行输出(输出端为),又可串行输入(输入端为D)/串行输出。   下图所示的是应用于加法器中的一种。图中,,,是三个n位的移位寄存器,和是并行输入/串行输出,是串行输入/并行输出。   >>
  • 来源:eelab.sjtu.edu.cn/dg/wlkc/netpages/d22_2_2.htm
  • 步进电机内部结构如图1所示:  如何能使它转起来呢?一搬有两种方法: 1.单相驱动:一相一相驱动,线圈加高电平顺序是:黄蓝红橙;或是:橙红蓝黄。其中黑白接地。 2.双相驱动:当要求电动机输出大功率时可以两相两相同时驱动,线圈加高电平顺序为:黄+红蓝+橙;或是:橙+蓝红+黄。 了解步进电机的驱动方式后、我想到了用移位寄存器产生移位脉冲来让步进电机动起来。电路如图2。  图2是通过拨码开关控制74LS194使Q0、Q1、Q2、Q3产生上面提过的两种移位脉冲来控制U1(光电耦合器
  • 步进电机内部结构如图1所示: 如何能使它转起来呢?一搬有两种方法: 1.单相驱动:一相一相驱动,线圈加高电平顺序是:黄蓝红橙;或是:橙红蓝黄。其中黑白接地。 2.双相驱动:当要求电动机输出大功率时可以两相两相同时驱动,线圈加高电平顺序为:黄+红蓝+橙;或是:橙+蓝红+黄。 了解步进电机的驱动方式后、我想到了用移位寄存器产生移位脉冲来让步进电机动起来。电路如图2。 图2是通过拨码开关控制74LS194使Q0、Q1、Q2、Q3产生上面提过的两种移位脉冲来控制U1(光电耦合器 >>
  • 来源:www.zxskj.cn/dianzi/zidongkongzhidianlu/1316.html
  •   当工作于并行输入/串行输出时(串行输入端D为0),首先清零,使四个触发器的输出全为0。再给寄存指令之前,G3-G0四个与非门的输出全为1。当加上该指令时,并设并行输入的二进制数d3d2d1d0=1011,于是G3,G1,G0输出置1负脉冲,使触发器F3,F1,F0的输出为1,G2和F2的输出未变。这样,就把1011输入寄存器。而后输入移位脉冲C,使d0,d1,d2 ,d3依次(从低位到高位)从 Q
  •   当工作于并行输入/串行输出时(串行输入端D为0),首先清零,使四个触发器的输出全为0。再给寄存指令之前,G3-G0四个与非门的输出全为1。当加上该指令时,并设并行输入的二进制数d3d2d1d0=1011,于是G3,G1,G0输出置1负脉冲,使触发器F3,F1,F0的输出为1,G2和F2的输出未变。这样,就把1011输入寄存器。而后输入移位脉冲C,使d0,d1,d2 ,d3依次(从低位到高位)从 Q >>
  • 来源:www.musen.com.cn/news/15655.html
  • the shift register will always be one clock pulse ahead of the storage register. 移位寄存器具有用于级联的一个串行输入(DS)和一个串行标准输出(Q7S)。该器件还针对所有8个移位寄存器级提供异步复位(低电平有效)。该存储寄存器具有8个平行3态总线驱动器输出。输出使能输入(OE)为低电平时,存储寄存器中的数据出现在输出处。 The shift register has a serial input (DS) and a ser
  • the shift register will always be one clock pulse ahead of the storage register. 移位寄存器具有用于级联的一个串行输入(DS)和一个串行标准输出(Q7S)。该器件还针对所有8个移位寄存器级提供异步复位(低电平有效)。该存储寄存器具有8个平行3态总线驱动器输出。输出使能输入(OE)为低电平时,存储寄存器中的数据出现在输出处。 The shift register has a serial input (DS) and a ser >>
  • 来源:blog.sina.com.cn/s/blog_d7132b350102vha3.html
  • 这是一个关于电子科学与技术介绍ppt模板,主要介绍时序逻辑电路的基本概念、时序逻辑电路的一般分析方法、计数器、时序逻辑电路的设计方法。欢迎点击下载哦。 PPT预览   PPT内容 第六章 时序逻辑电路 6.1 时序逻辑电路的基本概念 一、 时序逻辑电路的结构及特点 时序逻辑电路——任何一个时刻的输出状态不仅取决于当时的输入信号,还与电路的原状态有关。 时序电路的特点:(1)含有具有记忆元件(最常用的是触发器)。(2)具有反馈通道。 6.
  • 这是一个关于电子科学与技术介绍ppt模板,主要介绍时序逻辑电路的基本概念、时序逻辑电路的一般分析方法、计数器、时序逻辑电路的设计方法。欢迎点击下载哦。 PPT预览 PPT内容 第六章 时序逻辑电路 6.1 时序逻辑电路的基本概念 一、 时序逻辑电路的结构及特点 时序逻辑电路——任何一个时刻的输出状态不仅取决于当时的输入信号,还与电路的原状态有关。 时序电路的特点:(1)含有具有记忆元件(最常用的是触发器)。(2)具有反馈通道。 6. >>
  • 来源:www.pptok.com/pptok/20161224131083.html
  • 处理。  在图8.8.3中还画出了第5到第8个时钟脉冲作用下,输入数码在寄存器中移位的波形(如图8.8.2所示)。由图可见,在第8个时钟脉冲作用后,数码从Q3端已全部移出寄存器。这说明存入该寄存器中的数码也可以从Q端串行输出。根据需要,可用更多的触发器组成多位移位寄存器。 除了用边沿D 触发器外,还可用其他类型的触发器来组成移位寄存器,例如,用主从JK 触发器来组成移位寄存器,其级间连接方式如图8.
  • 处理。 在图8.8.3中还画出了第5到第8个时钟脉冲作用下,输入数码在寄存器中移位的波形(如图8.8.2所示)。由图可见,在第8个时钟脉冲作用后,数码从Q3端已全部移出寄存器。这说明存入该寄存器中的数码也可以从Q端串行输出。根据需要,可用更多的触发器组成多位移位寄存器。 除了用边沿D 触发器外,还可用其他类型的触发器来组成移位寄存器,例如,用主从JK 触发器来组成移位寄存器,其级间连接方式如图8. >>
  • 来源:www.pw0.cn/baike/jidianqi/20161059683.html
  • 需要的功能模块都集成到一个 里, 构建一个可编程的片上系统[1]。它还具有灵活的设计方式,可裁减、可扩充、可升级,具备系统可编程等功能,是一种优秀的嵌入式系统设计技术[2]。本文研究了一种基于SOPC技术的嵌入式数字音频录放系统的设计方案。系统通过在FPGA芯片上配置NiosII软核处理器和相关的接口模块来实现嵌入式系统的主要硬件结构,并结合嵌入式系统所支持的软件设计来控制音频编/解码芯片WM8731和SDRAM,实现了音频信号的A/D、D/A转换、存储、回放等功能。由于采用了SOPC和DMA控制技术,该
  • 需要的功能模块都集成到一个 里, 构建一个可编程的片上系统[1]。它还具有灵活的设计方式,可裁减、可扩充、可升级,具备系统可编程等功能,是一种优秀的嵌入式系统设计技术[2]。本文研究了一种基于SOPC技术的嵌入式数字音频录放系统的设计方案。系统通过在FPGA芯片上配置NiosII软核处理器和相关的接口模块来实现嵌入式系统的主要硬件结构,并结合嵌入式系统所支持的软件设计来控制音频编/解码芯片WM8731和SDRAM,实现了音频信号的A/D、D/A转换、存储、回放等功能。由于采用了SOPC和DMA控制技术,该 >>
  • 来源:www.lightingsd.com/html/zhaomingbaike/dianzijishu/2009/0322/45479.html
  • 首次循环时开始时,根据LABVIEW数据流的控制方式,从左侧寄存器单元读取SR寄存器的当前值。由于所有SR单元初始化为0,所以首次读取的SR单元值均为0。当循环结束时,输入数组的首个元素2进入SR的数据输入端,同时进行移位操作。以后每次循环依次类推。表格1详细说明了每次循环前后SR单元中存储值的变化情况。
  • 首次循环时开始时,根据LABVIEW数据流的控制方式,从左侧寄存器单元读取SR寄存器的当前值。由于所有SR单元初始化为0,所以首次读取的SR单元值均为0。当循环结束时,输入数组的首个元素2进入SR的数据输入端,同时进行移位操作。以后每次循环依次类推。表格1详细说明了每次循环前后SR单元中存储值的变化情况。 >>
  • 来源:blog.csdn.net/lz2906190/article/details/38870277?locationNum=9
  • 数字通讯   仪表提供串行异步半工RS485通讯接口,采用MOD-BUS-RTU协议,各种数据信息均可在通讯线路上传送。在一条线路上可以同时连接多达32个网络仪表,每个网络仪表均可以设定其通讯地址(AddressNO.),不同系列仪表的通讯接线端子号码不同,通讯连接应使用带有铜网的屏蔽双绞线,线径不小于0.
  • 数字通讯   仪表提供串行异步半工RS485通讯接口,采用MOD-BUS-RTU协议,各种数据信息均可在通讯线路上传送。在一条线路上可以同时连接多达32个网络仪表,每个网络仪表均可以设定其通讯地址(AddressNO.),不同系列仪表的通讯接线端子号码不同,通讯连接应使用带有铜网的屏蔽双绞线,线径不小于0. >>
  • 来源:yqjinya.com/product-detail.asp?id=127
  • 4.4.2 移位型计数器 移位寄存器也可以构成计数器,称为移位型计数器。它有两种结构:环形计数器和扭环形计数器。 图 4-4-3 环形计数器和扭环形计数器 4.4.3 串-并变换器及并-串变换器 串-并变换器是把若干位串行二进制编码变成并行二进制编码的电路。并-串变换器则刚刚相反。  图 4-4-4 8位串-并变换器  图 4-4-5 8位并-串变换器 4.
  • 4.4.2 移位型计数器 移位寄存器也可以构成计数器,称为移位型计数器。它有两种结构:环形计数器和扭环形计数器。 图 4-4-3 环形计数器和扭环形计数器 4.4.3 串-并变换器及并-串变换器 串-并变换器是把若干位串行二进制编码变成并行二进制编码的电路。并-串变换器则刚刚相反。 图 4-4-4 8位串-并变换器 图 4-4-5 8位并-串变换器 4. >>
  • 来源:gc.nuaa.edu.cn/digital/kejian/ch4/4-4.htm
  • (255)  贴片/片式开关(15) 轻触开关(47) 自锁开关(6) 微动开关(31) 薄膜/金属弹片开关(1) 直键开关(1) 船形/跷板/波动开关(3) 按钮/按键开关(1) 检测开关(2) 拨动/滑动开关(57) 推推式电源开关(25) DIP/拨码开关(3) (手机)天线开关(1) 舌簧/干簧管(磁控管)开关(10) 侧按开关(1) 触摸/感应开关(1) 霍尔开关(6) 光电开关(8) 定时/时控开关(6) 遥控开关(2) 接近开关(2) 空气开关(14) 倒顺开关(2) 液位/水位/料位开关(
  • (255) 贴片/片式开关(15) 轻触开关(47) 自锁开关(6) 微动开关(31) 薄膜/金属弹片开关(1) 直键开关(1) 船形/跷板/波动开关(3) 按钮/按键开关(1) 检测开关(2) 拨动/滑动开关(57) 推推式电源开关(25) DIP/拨码开关(3) (手机)天线开关(1) 舌簧/干簧管(磁控管)开关(10) 侧按开关(1) 触摸/感应开关(1) 霍尔开关(6) 光电开关(8) 定时/时控开关(6) 遥控开关(2) 接近开关(2) 空气开关(14) 倒顺开关(2) 液位/水位/料位开关( >>
  • 来源:product.dzsc.com/product/infomation/123460/201251211212699.html
  • 这样将两个N点的DFT分成两个N/2点的DFT,分的方法是将x(k)按序号k的奇、偶分开。通过这种方式继续分下去,直到得到两点的DFT。采用DIF方法设计的FFT,其输入是正序,输出是按照奇偶分开的倒序。 2 移位寄存器流水线结构的FFT 在传统流水线结构的FFT中,需要将全部数据输入寄存器后,可开始蝶形运算。在基-2 DIF算法中可以发现,当前N/2个数据进入寄存器后,运算便可以开始,此后进入的第N/2+1个数据与寄存器第一个数据进行蝶形运算,以此类推。 由于采用频域抽取法,不需要对输入的数据进行倒序
  • 这样将两个N点的DFT分成两个N/2点的DFT,分的方法是将x(k)按序号k的奇、偶分开。通过这种方式继续分下去,直到得到两点的DFT。采用DIF方法设计的FFT,其输入是正序,输出是按照奇偶分开的倒序。 2 移位寄存器流水线结构的FFT 在传统流水线结构的FFT中,需要将全部数据输入寄存器后,可开始蝶形运算。在基-2 DIF算法中可以发现,当前N/2个数据进入寄存器后,运算便可以开始,此后进入的第N/2+1个数据与寄存器第一个数据进行蝶形运算,以此类推。 由于采用频域抽取法,不需要对输入的数据进行倒序 >>
  • 来源:xilinx.eetop.cn/viewnews-146
  • 接下来结合CRC-4/GICREN的硬件模型分析CRC的物理现象。假设即将输入CRC-4/GICREN的比特数据为X、当前CRC的运算结果为ABCD以及X ^ A = E(此处的"^"为异或符号),注意:A、B、C、D、E及X均为二进制数,通过上述的硬件模型可得新的CRC运算结果。为便于表达,采用表格形式体现整个运算及变换的过程,如表1-1: 用文字表达上述等效模型为: 1.
  • 接下来结合CRC-4/GICREN的硬件模型分析CRC的物理现象。假设即将输入CRC-4/GICREN的比特数据为X、当前CRC的运算结果为ABCD以及X ^ A = E(此处的"^"为异或符号),注意:A、B、C、D、E及X均为二进制数,通过上述的硬件模型可得新的CRC运算结果。为便于表达,采用表格形式体现整个运算及变换的过程,如表1-1: 用文字表达上述等效模型为: 1. >>
  • 来源:www.51hei.com/bbs/dpj-93053-1.html
  • 前段时间做了个迷你电子称跟大家分享一下。 当时设计的时候想着用两节五号干电池让它工作,综合了一下成本,选用了STC15W408AS 20P 做主控,采用74HC595串口驱动数码管做显示。 不得不在这里赞扬一下STC15W408AS这个单片机,个人认为它价格便宜,功能强大,引脚少,更重要的是工作电压是5.
  • 前段时间做了个迷你电子称跟大家分享一下。 当时设计的时候想着用两节五号干电池让它工作,综合了一下成本,选用了STC15W408AS 20P 做主控,采用74HC595串口驱动数码管做显示。 不得不在这里赞扬一下STC15W408AS这个单片机,个人认为它价格便宜,功能强大,引脚少,更重要的是工作电压是5. >>
  • 来源:www.ndiy.cn/forum.php?mod=viewthread&tid=33868&highlight=STC15W
  • 基于上述基本原理,将这种移位寄存器结构扩展到整个FFT系统的各级,可以发现各级使用的移位寄存器数量是递减的。现使用一个8点结构来进行说明。 如图3所示,数据由输入l和输入2进入第一级。通过开关进行选通控制。由于是N=8的运算,所以各级分别加入4级、2级和1级的移位寄存器。
  • 基于上述基本原理,将这种移位寄存器结构扩展到整个FFT系统的各级,可以发现各级使用的移位寄存器数量是递减的。现使用一个8点结构来进行说明。 如图3所示,数据由输入l和输入2进入第一级。通过开关进行选通控制。由于是N=8的运算,所以各级分别加入4级、2级和1级的移位寄存器。 >>
  • 来源:xilinx.eetop.cn/viewnews-146
  • 图 3. 调用Modbus RTU 主站读写子程序 各参数意义如下: a. EN 使能: 同一时刻只能有一个读写功能(即 MBUS_MSG)使能 注意:建议每一个读写功能(即 MBUS_MSG)都用上一个 MBUS_MSG 指令的 Done 完成位来激活,以保证所有读写指令循环进行(见例程)。 b. First 读写请求位: 每一个新的读写请求必须使用脉冲触发 c.
  • 图 3. 调用Modbus RTU 主站读写子程序 各参数意义如下: a. EN 使能: 同一时刻只能有一个读写功能(即 MBUS_MSG)使能 注意:建议每一个读写功能(即 MBUS_MSG)都用上一个 MBUS_MSG 指令的 Done 完成位来激活,以保证所有读写指令循环进行(见例程)。 b. First 读写请求位: 每一个新的读写请求必须使用脉冲触发 c. >>
  • 来源:bbs.gongkong.com/m/d/346209_1.htm
  • 1 引言 近年来,数字信号处理器(DSP)的应用越来越广泛,其中TMS320F2812作为目前数字控制领域中性能较高的DSP芯片,被广泛应用于电机控制、工业自动化、家用电器和消费电子等领域。由于TMS320F2812本身不具有D/A转换模块,因此在很多需要模拟量输出的控制场合受到限制。所以D/A转换芯片如何与TMS320F2812进行接口,成为数字信号处理系统需要解决的一个重要问题。这里介绍了四路8位电压输出数字一模拟转换器TLC5620I,并给出TLC5620I与TMS320F2812串口接口的软、硬件
  • 1 引言 近年来,数字信号处理器(DSP)的应用越来越广泛,其中TMS320F2812作为目前数字控制领域中性能较高的DSP芯片,被广泛应用于电机控制、工业自动化、家用电器和消费电子等领域。由于TMS320F2812本身不具有D/A转换模块,因此在很多需要模拟量输出的控制场合受到限制。所以D/A转换芯片如何与TMS320F2812进行接口,成为数字信号处理系统需要解决的一个重要问题。这里介绍了四路8位电压输出数字一模拟转换器TLC5620I,并给出TLC5620I与TMS320F2812串口接口的软、硬件 >>
  • 来源:www.qc99.com/baike/dianzibaike/qianrushi/090423768.html