• 图3-3-4和图3-3-5给出了NPN三极管构成的基本放大电路的失真情况。要注意不能简单地通过波形是顶部有失真,还是底部有失真来判断是饱和还是截止失真。因为对于NPN三极管构成的基本放大电路,还是PNP三极管构成的基本放大电路,由于供电电压极性的不同,同一种失真可能出现在顶部,或出现在底部。
  • 图3-3-4和图3-3-5给出了NPN三极管构成的基本放大电路的失真情况。要注意不能简单地通过波形是顶部有失真,还是底部有失真来判断是饱和还是截止失真。因为对于NPN三极管构成的基本放大电路,还是PNP三极管构成的基本放大电路,由于供电电压极性的不同,同一种失真可能出现在顶部,或出现在底部。 >>
  • 来源:hitjpkc.hit.edu.cn/elec/JS/js08/mold/moni/CHAP3/3-3/4.htm
  • 标签:style log com http si it la src sp 推荐一本不错的书籍,《电子设计从零开始》(杨欣)。通读此书,通俗易懂,还结合multisim进行仿真验证。对本科阶段的模电书籍是一种颠覆。 以下截取自里面部分章节,如何计算共射极放大电路的各个参数。很实用。 1.Vcq为集电极的静态工作电压,Vcq的选取为了避免出现饱和和截止失真,使Vcq ≈ 1/2 * Vcc,Rc = 10Re; 图1为基极分压式共射极放大电路的直流通路  实际在应用过程中,就是需要确定上述各个电
  • 标签:style log com http si it la src sp 推荐一本不错的书籍,《电子设计从零开始》(杨欣)。通读此书,通俗易懂,还结合multisim进行仿真验证。对本科阶段的模电书籍是一种颠覆。 以下截取自里面部分章节,如何计算共射极放大电路的各个参数。很实用。 1.Vcq为集电极的静态工作电压,Vcq的选取为了避免出现饱和和截止失真,使Vcq ≈ 1/2 * Vcc,Rc = 10Re; 图1为基极分压式共射极放大电路的直流通路 实际在应用过程中,就是需要确定上述各个电 >>
  • 来源:www.bubuko.com/infodetail-1460407.html
  •   各元件的作用   晶体管T--放大元件, iC=b iB。要保证集电结反偏,发射结正偏,使晶体管工作在放大区 。   基极电源EB与基极电阻RB--使发射结处于正偏,并提供大小适当的基极电流。   集电极电源EC --为电路提供能量。并保证集电结反偏。   集电极电阻RC--将电流放大转变为电压放大。   耦合电容C1 、C2 --隔离输入、输出与放大电路的直流联系,使交流信号顺利输入、输出。 来源:
  •   各元件的作用   晶体管T--放大元件, iC=b iB。要保证集电结反偏,发射结正偏,使晶体管工作在放大区 。   基极电源EB与基极电阻RB--使发射结处于正偏,并提供大小适当的基极电流。   集电极电源EC --为电路提供能量。并保证集电结反偏。   集电极电阻RC--将电流放大转变为电压放大。   耦合电容C1 、C2 --隔离输入、输出与放大电路的直流联系,使交流信号顺利输入、输出。 来源: >>
  • 来源:www.dzsc.com/data/Circuit-18232.html
  • 图3-3-4和图3-3-5给出了NPN三极管构成的基本放大电路的失真情况。要注意不能简单地通过波形是顶部有失真,还是底部有失真来判断是饱和还是截止失真。因为对于NPN三极管构成的基本放大电路,还是PNP三极管构成的基本放大电路,由于供电电压极性的不同,同一种失真可能出现在顶部,或出现在底部。
  • 图3-3-4和图3-3-5给出了NPN三极管构成的基本放大电路的失真情况。要注意不能简单地通过波形是顶部有失真,还是底部有失真来判断是饱和还是截止失真。因为对于NPN三极管构成的基本放大电路,还是PNP三极管构成的基本放大电路,由于供电电压极性的不同,同一种失真可能出现在顶部,或出现在底部。 >>
  • 来源:hitjpkc.hit.edu.cn/elec/JS/js08/mold/moni/CHAP3/3-3/4.htm
  • 图3 小信号交流电路等效原则:1.大容量电容短路;2.Vcc对地短路;3.需要考虑re’; 一般情况若是需要确定上述各个参数,需要从静态工作点出发。经验公式如下: Vcq ≈ 1/2 * Vcc,Rc = 10Re; re’ = 25/Ieq;
  • 图3 小信号交流电路等效原则:1.大容量电容短路;2.Vcc对地短路;3.需要考虑re’; 一般情况若是需要确定上述各个参数,需要从静态工作点出发。经验公式如下: Vcq ≈ 1/2 * Vcc,Rc = 10Re; re’ = 25/Ieq; >>
  • 来源:www.bubuko.com/infodetail-1460407.html
  • 当工业生产和日常生活中需要将微弱变化的电信号放大几百倍,几千倍甚至几十万倍之后去带动执行机构时,我们首先想到的就是三极管。究竟怎样利用三极管放大电路呢?现为大家详细分析一下。  1.三极管放大器的组成元件 图1为共发射极基本放大电路。当输入端加入微弱的交流电压信号ui时,输出端就得到一个放大了的输出电压uo。由于放大器的输出功率比输入功率大,而输出功率通过直流电源转换获得,所以放大器必须加上直流电源才能工作。从这一点来说,放大器实质上是能量转换器,它把直流电能转换成交流电能。放大器是由三极管、电阻、电容和
  • 当工业生产和日常生活中需要将微弱变化的电信号放大几百倍,几千倍甚至几十万倍之后去带动执行机构时,我们首先想到的就是三极管。究竟怎样利用三极管放大电路呢?现为大家详细分析一下。 1.三极管放大器的组成元件 图1为共发射极基本放大电路。当输入端加入微弱的交流电压信号ui时,输出端就得到一个放大了的输出电压uo。由于放大器的输出功率比输入功率大,而输出功率通过直流电源转换获得,所以放大器必须加上直流电源才能工作。从这一点来说,放大器实质上是能量转换器,它把直流电能转换成交流电能。放大器是由三极管、电阻、电容和 >>
  • 来源:www.afinance.cn/syxw/2913195.html
  • 有假设过,为C20充电引起,后经过验证,把基极分压电阻R87改为510k,R86为330k后<此时实测电压,C点0.9V左右,B点0,9V左右,E点0,3V左右,CE间压降约为3,2V左右>虽然解决了输出变化问题,但放大倍数又达不到,在此基础上调节R85,使放大倍数达标,但又出现放大输出信号出现前一秒左右放大倍数偏小,后恢复正常。 请各位大神指点。
  • 有假设过,为C20充电引起,后经过验证,把基极分压电阻R87改为510k,R86为330k后<此时实测电压,C点0.9V左右,B点0,9V左右,E点0,3V左右,CE间压降约为3,2V左右>虽然解决了输出变化问题,但放大倍数又达不到,在此基础上调节R85,使放大倍数达标,但又出现放大输出信号出现前一秒左右放大倍数偏小,后恢复正常。 请各位大神指点。 >>
  • 来源:www.teaku.com/19/1467813930496194.html
  • 五、共射极放大电路      注意要点:   1、三极管的结构、三极管各极电流关系、特性曲线、放大条件;   2、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图;   3、静态工作点的计算、电压放大倍数的计算。   六、分压偏置式共射极放大电路      分压偏置式共射极放大电路   注意要点:   1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图;   2、电流串联负反馈过程的分析,负反馈对电 路参数的影响;   
  • 五、共射极放大电路      注意要点:   1、三极管的结构、三极管各极电流关系、特性曲线、放大条件;   2、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图;   3、静态工作点的计算、电压放大倍数的计算。   六、分压偏置式共射极放大电路      分压偏置式共射极放大电路   注意要点:   1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图;   2、电流串联负反馈过程的分析,负反馈对电 路参数的影响;    >>
  • 来源:meng.cecb2b.com/info/20121105/253052.html
  • 超低频绝缘耐压试验实际上是工频耐压试验的一种替代方法。我们知道,在对大型发电机、电缆等试品进行工频耐压试验时,由于它们的绝缘层呈现较大的电容量,所以需要很大容量的试验变压器或谐振变压器。这样一些巨大的设备,不但笨重,造价高,而且使用十分不便。为了解决这一矛盾,电力部门采用了降低试验频率,降低了试验电源的容量。从国内外多年的理论和实践证明,用0.
  • 超低频绝缘耐压试验实际上是工频耐压试验的一种替代方法。我们知道,在对大型发电机、电缆等试品进行工频耐压试验时,由于它们的绝缘层呈现较大的电容量,所以需要很大容量的试验变压器或谐振变压器。这样一些巨大的设备,不但笨重,造价高,而且使用十分不便。为了解决这一矛盾,电力部门采用了降低试验频率,降低了试验电源的容量。从国内外多年的理论和实践证明,用0. >>
  • 来源:www.hjjdyb.com/news_detail.asp?ParentID=8&News_ID=1815
  • 对模拟电路的掌握分为三个层次。 初级层次是熟练记住这二十个电路,清楚这二十个电路的作用。只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。 中级层次是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修
  • 对模拟电路的掌握分为三个层次。 初级层次是熟练记住这二十个电路,清楚这二十个电路的作用。只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。 中级层次是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修 >>
  • 来源:www.bbfar.com/article/1e/2975.html
  • 5.1 半导体三极管英文缩写:Q/T 5.2半导体三极管在电路中常用Q加数字表示,如:Q17表示编号为17的三极管。 5.3 半导体三极管特点:半导体三极管(简称晶体管)是内部含有2个PN结,并且具有放大能力的特殊器件。它分NPN型和PNP型两种类型,这两种类型的三极管从工作特性上可互相弥补,所谓OTL电路中的对管就是由PNP型和NPN型配对使用。 按材料来分 可分硅和锗管,我国目前生产的硅管多为NPN型,锗管多为PNP型。   5.
  • 5.1 半导体三极管英文缩写:Q/T 5.2半导体三极管在电路中常用Q加数字表示,如:Q17表示编号为17的三极管。 5.3 半导体三极管特点:半导体三极管(简称晶体管)是内部含有2个PN结,并且具有放大能力的特殊器件。它分NPN型和PNP型两种类型,这两种类型的三极管从工作特性上可互相弥补,所谓OTL电路中的对管就是由PNP型和NPN型配对使用。 按材料来分 可分硅和锗管,我国目前生产的硅管多为NPN型,锗管多为PNP型。 5. >>
  • 来源:www.jcpeixun.com/knowledge/detail.aspx?id=19571
  • 射极输出器中的电阻Rg,还具有稳定静态工作点的作用。例如,当温度升高时,由于ICQ增大,IEQ增大使Rg上的压降上升,导致 VBEQ下降,从而牵制了ICQ的进一步上升,最终稳定了静态工作点。 (2)动态分析 画出图1(a)所示电路的微变等效电路如图3所示:  图3 共集电极放大电路微变等效电路
  • 射极输出器中的电阻Rg,还具有稳定静态工作点的作用。例如,当温度升高时,由于ICQ增大,IEQ增大使Rg上的压降上升,导致 VBEQ下降,从而牵制了ICQ的进一步上升,最终稳定了静态工作点。 (2)动态分析 画出图1(a)所示电路的微变等效电路如图3所示: 图3 共集电极放大电路微变等效电路 >>
  • 来源:www.diangon.com/wenku/rd/dianzi/201411/00015231.html
  • 1、基本概念 反馈、正反馈和负反馈、电压反馈和电流反馈、并联反馈和串联反馈等基本概念; 2、反馈类型判断:有无反馈?是直流反馈、还是交流反馈?是正反馈、还是负反馈? 3、交流负反馈的四种组态及判断方法; 4、交流负反馈放大电路的一般表达式; 5、放大电路中引入不同组态的负反馈后,对电路性能的影响; 6、深度负反馈的概念,在深度负反馈条件下,放大倍数的估算;
  • 1、基本概念 反馈、正反馈和负反馈、电压反馈和电流反馈、并联反馈和串联反馈等基本概念; 2、反馈类型判断:有无反馈?是直流反馈、还是交流反馈?是正反馈、还是负反馈? 3、交流负反馈的四种组态及判断方法; 4、交流负反馈放大电路的一般表达式; 5、放大电路中引入不同组态的负反馈后,对电路性能的影响; 6、深度负反馈的概念,在深度负反馈条件下,放大倍数的估算; >>
  • 来源:netclass.csu.edu.cn/jpkc2007/CSU/04%C4%A3%C4%E2%B5%E7%D7%D3%BC%BC%CA%F5/jiaoan/6.htm
  • 1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。 2、电流串联负反馈过程的分析,负反馈对电路参数的影响。 3、静态工作点的计算、电压放大倍数的计算。 4、受控源等效电路分析。 七、 共集电极放大电路(射极跟随器)
  • 1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。 2、电流串联负反馈过程的分析,负反馈对电路参数的影响。 3、静态工作点的计算、电压放大倍数的计算。 4、受控源等效电路分析。 七、 共集电极放大电路(射极跟随器) >>
  • 来源:www.dzsc.com/data/Circuit-51610.html
  • 推荐一本不错的书籍,《电子设计从零开始》(杨欣)。通读此书,通俗易懂,还结合multisim进行仿真验证。对本科阶段的模电书籍是一种颠覆。 以下截取自里面部分章节,如何计算共射极放大电路的各个参数。很实用。 1.Vcq为集电极的静态工作电压,Vcq的选取为了避免出现饱和和截止失真,使Vcq ≈ 1/2 * Vcc,Rc = 10Re; 图1为基极分压式共射极放大电路的直流通路
  • 推荐一本不错的书籍,《电子设计从零开始》(杨欣)。通读此书,通俗易懂,还结合multisim进行仿真验证。对本科阶段的模电书籍是一种颠覆。 以下截取自里面部分章节,如何计算共射极放大电路的各个参数。很实用。 1.Vcq为集电极的静态工作电压,Vcq的选取为了避免出现饱和和截止失真,使Vcq ≈ 1/2 * Vcc,Rc = 10Re; 图1为基极分压式共射极放大电路的直流通路 >>
  • 来源:www.cnblogs.com/raymon-tec/p/5293687.html
  • 心电信号前置放大电路 电极获取的心电信号是十分微弱的体表电信号且在心电信号检测的过程中常伴有强干扰,因此必须经特定处理后才能用于临床诊断。本设计采用TI公司的精密仪表放大器INA326,设计了八通道心电信号采集电路,同时提取I、II及V1~V6八导联心电信号,其它四导联心电信号则在经ADC变换后在数字处理部分根据需要利用I导和II导组合实现。心电信号前置放大电路如图2所示。前级共模信号由被测者的左、右手以及左腿获取,该电路在前级增加了一级共模信号驱动,用来降低共模信号的输出阻抗和提高共模信号驱动能力,确保
  • 心电信号前置放大电路 电极获取的心电信号是十分微弱的体表电信号且在心电信号检测的过程中常伴有强干扰,因此必须经特定处理后才能用于临床诊断。本设计采用TI公司的精密仪表放大器INA326,设计了八通道心电信号采集电路,同时提取I、II及V1~V6八导联心电信号,其它四导联心电信号则在经ADC变换后在数字处理部分根据需要利用I导和II导组合实现。心电信号前置放大电路如图2所示。前级共模信号由被测者的左、右手以及左腿获取,该电路在前级增加了一级共模信号驱动,用来降低共模信号的输出阻抗和提高共模信号驱动能力,确保 >>
  • 来源:design.eccn.com/design_2011010716583880.htm
  • [产品介绍]: 数据列表 TL071/A/B, TL072/A/B, TL074/A/B 标准包装 2,500 包装 标准卷带 类别 集成电路(IC) 产品族 线性 - 放大器 - 仪表,运算放大器,缓冲器放大器 放大器类型 J-FET 电路数 4 输出类型 - 压摆率 13 V/s 增益带宽积 3MHz -3db 带宽 - 电流 - 输入偏置 65pA 电压 - 输入失调 3mV 电流 - 电源 1.
  • [产品介绍]: 数据列表 TL071/A/B, TL072/A/B, TL074/A/B 标准包装 2,500 包装 标准卷带 类别 集成电路(IC) 产品族 线性 - 放大器 - 仪表,运算放大器,缓冲器放大器 放大器类型 J-FET 电路数 4 输出类型 - 压摆率 13 V/s 增益带宽积 3MHz -3db 带宽 - 电流 - 输入偏置 65pA 电压 - 输入失调 3mV 电流 - 电源 1. >>
  • 来源:product.dianyuan.com/1161275.html